Colour and rotation invariant textural features based on Markov random fields

A visual appearance of natural materials significantly depends on acquisition circumstances, particularly illumination conditions and viewpoint position, whose variations cause difficulties in the analysis of real scenes. We address this issue with novel texture features, based on fast estimates of Markovian statistics, that are simultaneously rotation and illumination invariant. The proposed features are invariant to in-plane material rotation and illumination spectrum (colour invariance), they are robust to local intensity changes (cast shadows) and illumination direction. No knowledge of illumination conditions is required and recognition is possible from a single training image per material. The material recognition is tested on the currently most realistic visual representation - Bidirectional Texture Function (BTF), using CUReT and ALOT texture datasets with more than 250 natural materials. Our proposed features significantly outperform leading alternatives including Local Binary Patterns (LBP, LBP-HF) and texton MR8 methods.

[1]  Arnold W. M. Smeulders,et al.  Color constancy from physical principles , 2003, Pattern Recognit. Lett..

[2]  David A. Clausi,et al.  Gaussian MRF rotation-invariant features for image classification , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Rangasami L. Kashyap,et al.  A Model-Based Method for Rotation Invariant Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  J. Flusser,et al.  Moments and Moment Invariants in Pattern Recognition , 2009 .

[5]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Glenn Healey,et al.  The illumination-invariant recognition of color texture , 1995, Proceedings of IEEE International Conference on Computer Vision.

[7]  Jirí Filip,et al.  Bidirectional Texture Function Modeling: A State of the Art Survey , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  G. Finlayson,et al.  Coefficient color constancy , 1995 .

[10]  H. B. Mitchell Markov Random Fields , 1982 .

[11]  Michal Haindl,et al.  Illumination invariants based on Markov random fields , 2008, 2008 19th International Conference on Pattern Recognition.

[12]  Michal Haindl,et al.  A Multispectral Image Line Reconstruction Method , 1992 .

[13]  B A Wandell,et al.  Linear models of surface and illuminant spectra. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[14]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2004, International Journal of Computer Vision.

[15]  Shu Liao,et al.  Dominant Local Binary Patterns for Texture Classification , 2009, IEEE Transactions on Image Processing.

[16]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[17]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Hamid Soltanian-Zadeh,et al.  Radon transform orientation estimation for rotation invariant texture analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Gertjan J. Burghouts,et al.  Material-specific adaptation of color invariant features , 2009, Pattern Recognit. Lett..

[20]  Gertjan J. Burghouts,et al.  Performance evaluation of local colour invariants , 2009, Comput. Vis. Image Underst..

[21]  Michal Haindl,et al.  Illumination invariant unsupervised segmenter , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[22]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[23]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[24]  Ioannis Patras,et al.  Combining color and shape information for illumination-viewpoint invariant object recognition , 2006, IEEE Transactions on Image Processing.

[25]  Matti Pietikäinen,et al.  Outex - new framework for empirical evaluation of texture analysis algorithms , 2002, Object recognition supported by user interaction for service robots.

[26]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[27]  M. Chantler Why illuminant direction is fundamental to texture analysis , 2022 .

[28]  Matti Pietikäinen,et al.  Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features , 2009, SCIA.

[29]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[30]  Jan Flusser,et al.  Rotation Moment Invariants for Recognition of Symmetric Objects , 2006, IEEE Transactions on Image Processing.

[31]  Michal Haindl,et al.  Image retrieval measures based on illumination invariant textural MRF features , 2007, CIVR '07.

[32]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[33]  Mohan M. Trivedi,et al.  Circular-Mellin features for texture segmentation , 1995, IEEE Transactions on Image Processing.

[34]  B. S. Manjunath,et al.  Rotation-invariant texture classification using a complete space-frequency model , 1999, IEEE Trans. Image Process..

[35]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.