Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime.

We demonstrate that the coupling between plasmonic modes of oriented metallic nanorods results in the formation of an extended (guided) plasmonic mode of the nanorod array. The electromagnetic field distribution associated to this mode is found to be concentrated between the nanorods within the assembly and propagates normally to the nanorod long axes, similar to a photonic mode waveguided by an anisotropic slab. This collective plasmonic mode determines the optical properties of nanorod assemblies and can be tuned in a wide spectral range by changing the nanorod array geometry. This geometry represents a unique opportunity for light guiding applications and manipulation at the nanoscale as well as sensing applications and development of molecular plasmonic devices.

[1]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[2]  David S. Citrin,et al.  Coherent excitation transport in metal-nanoparticle chains , 2004 .

[3]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[4]  G. Wurtz,et al.  Growth and properties of gold and nickel nanorods in thin film alumina , 2006 .

[5]  Federico Capasso,et al.  Optical properties of surface plasmon resonances of coupled metallic nanorods. , 2007, Optics express.

[6]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[7]  Aristides A. G. Requicha,et al.  Observation of coupled plasmon-polariton modes of plasmon waveguides for electromagnetic energy transport below the diffraction limit , 2002, SPIE Optics + Photonics.

[8]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[9]  Harald Ditlbacher,et al.  Plasmon dispersion relation of Au and Ag nanowires , 2003 .

[10]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[11]  G. Wurtz,et al.  Plasmonic Core/Shell nanorod arrays: Subattoliter controlled geometry and tunable optical properties , 2007 .

[12]  S. M. Black,et al.  Institute of Physics Publishing Journal of Optics A: Pure and Applied Optics Online Pattern Recognition in Noisy Background by Means of Wavelet Coefficients Thresholding , 2005 .

[13]  Paul Mulvaney,et al.  Gold nanorod extinction spectra , 2006 .

[14]  J. J. Xiao,et al.  Optical response of strongly coupled metal nanoparticles in dimer arrays , 2005 .

[15]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[16]  Wayne Dickson,et al.  Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. , 2007, Nano letters.

[17]  Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation , 2006 .

[18]  B H Robinson,et al.  Influence of isomerization on nonlinear optical properties of molecules. , 2006, The journal of physical chemistry. B.

[19]  A. Polman,et al.  Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains , 2005, cond-mat/0512187.

[20]  Andreas Offenhäusser,et al.  Fabrication of large-scale patterned gold-nanopillar arrays on a silicon substrate using imprinted porous alumina templates. , 2006, Small.

[21]  S. Mátéfi-Tempfli,et al.  Controlled growth of single nanowires within a supported alumina template , 2006 .

[22]  Sung Yong Park,et al.  Surface-plasmon dispersion relations in chains of metallic nanoparticles: An exact quasistatic calculation , 2004 .

[23]  G. Wurtz,et al.  Anisotropic optical properties of arrays of gold nanorods embedded in alumina , 2006 .

[24]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[25]  G. W. Ford,et al.  PROPAGATION OF OPTICAL EXCITATIONS BY DIPOLAR INTERACTIONS IN METAL NANOPARTICLE CHAINS , 2004 .

[26]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[27]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[28]  Nicholas A. Kotov,et al.  Bioconjugates of CdTe Nanowires and Au Nanoparticles: Plasmon−Exciton Interactions, Luminescence Enhancement, and Collective Effects , 2004 .

[29]  Garnett W. Bryant,et al.  Optical properties of coupled metallic nanorods for field-enhanced spectroscopy , 2005 .

[30]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[31]  I. Zozoulenko,et al.  Light propagation in nanorod arrays , 2006, physics/0607032.

[32]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[33]  Wayne Dickson,et al.  Restructuring and modification of metallic nanorod arrays using femtosecond laser direct writing , 2006 .

[34]  S. Kawata,et al.  Subwavelength optical imaging through a metallic nanorod array. , 2005, Physical review letters.