Supporting Online Material

The Mars Exploration Rover Opportunity has spent more than 2 years exploring Meridiani Planum, traveling ∼8 kilometers and detecting features that reveal ancient environmental conditions. These include well-developed festoon (trough) cross-lamination formed in flowing liquid water, strata with smaller and more abundant hematite-rich concretions than those seen previously, possible relict “hopper crystals” that might reflect the formation of halite, thick weathering rinds on rock surfaces, resistant fracture fills, and networks of polygonal fractures likely caused by dehydration of sulfate salts. Chemical variations with depth show that the siliciclastic fraction of outcrop rock has undergone substantial chemical alteration from a precursor basaltic composition. Observations from microscopic to orbital scales indicate that ancient Meridiani once had abundant acidic groundwater, arid and oxidizing surface conditions, and occasional liquid flow on the surface.

[1]  K. Wohletz,et al.  Impact origin of sediments at the Opportunity landing site on Mars , 2005, Nature.

[2]  B. Hynek,et al.  A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars , 2005, Nature.

[3]  William H. Farrand,et al.  Chemistry and mineralogy of outcrops at Meridiani Planum , 2005 .

[4]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[5]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[6]  A. Knoll,et al.  An astrobiological perspective on Meridiani Planum , 2005 .

[7]  Jeffrey R. Johnson,et al.  Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars , 2005 .

[8]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[9]  Pratim Biswas,et al.  Nanoparticles and the Environment , 2005 .

[10]  R E Arvidson,et al.  Spectral Reflectance and Morphologic Correlations in Eastern Terra Meridiani, Mars , 2005, Science.

[11]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[12]  U. Bonnes,et al.  Jarosite and Hematite at Meridiani Planum from Opportunity's Mössbauer Spectrometer , 2004, Science.

[13]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[14]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[15]  Raymond E. Arvidson,et al.  Rock Abrasion Tool: Mars Exploration Rover mission , 2003 .

[16]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[17]  Steven W. Squyres,et al.  The new Athena alpha particle X‐ray spectrometer for the Mars Exploration Rovers , 2003 .

[18]  S. T. Elliot,et al.  Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation , 2003 .

[19]  H. Graber,et al.  Impact of flow distortion corrections on turbulent fluxes estimated by the inertial dissipation method during the FETCH experiment on R/V L'Atalante , 2003 .

[20]  William M. Drennan,et al.  Constraining the inertial dissipation method using the vertical velocity variance , 2003 .

[21]  Steven H. Silverman,et al.  Miniature thermal emission spectrometer for the Mars Exploration Rover , 2002, SPIE Optics + Photonics.

[22]  Peter Kokelaar,et al.  Pyroclastic density currents and the sedimentation of ignimbrites , 2002 .

[23]  B. Schreiber,et al.  Deposition and early alteration of evaporites , 2000 .

[24]  A. Lasaga Kinetic theory in the earth sciences , 1998 .

[25]  J. Southard,et al.  Bed configuration in steady unidirectional water flows; Part 2, Synthesis of flume data , 1990 .

[26]  David M. Rubin,et al.  Cross-Bedding, Bedforms, and Paleocurrents , 1987 .

[27]  D. Rubin Formation of scalloped cross-bedding without unsteady flows , 1987 .

[28]  B. Charlotte Schreiber,et al.  Displacive Halite Hoppers from the Dead Sea: Some Implications for Ancient Evaporite Deposits , 1981 .

[29]  R. E. Hunter Basic types of stratification in small eolian dunes , 1977 .

[30]  B. Bainbridge,et al.  Genetics , 1981, Experientia.

[31]  R. Sparks,et al.  Grain size variations in ignimbrites and implications for the transport of pyroclastic flows , 1976 .

[32]  G. Friedman,et al.  Sedimentology , 1972, Nature.

[33]  J. Southard Representation of Bed Configurations in Depth-Velocity-Size Diagrams , 1971 .

[34]  G. Walker,et al.  Grain-Size Characteristics of Pyroclastic Deposits , 1971, The Journal of Geology.

[35]  M. Hanna Society of Economic Paleontologists and Mineralogists , 1927 .