Quantifying similarity of pore-geometry in nanoporous materials
暂无分享,去创建一个
Paweł Dłotko | Berend Smit | Kathryn Hess | Yongjin Lee | Senja Barthel | P. Dlotko | S. M. Moosavi | K. Hess | B. Smit | Yongjin Lee | Senja D. Barthel | S. Mohamad Moosavi | P. Dłotko | Paweł Dłotko
[1] P. Y. Lum,et al. Extracting insights from the shape of complex data using topology , 2013, Scientific Reports.
[2] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[3] Konstantin Mischaikow,et al. Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..
[4] A. Bondi. van der Waals Volumes and Radii , 1964 .
[5] Randall Q. Snurr,et al. Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials , 2007 .
[6] Randall Q. Snurr,et al. Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks , 2010 .
[7] Robin Taylor,et al. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii , 1996 .
[8] Maciej Haranczyk,et al. In Silico Discovery of High Deliverable Capacity Metal–Organic Frameworks , 2015 .
[9] C. Wilmer,et al. Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.
[10] Andrew I. Cooper,et al. Conjugated Microporous Polymers , 2009 .
[11] Nicola Nosengo,et al. Can artificial intelligence create the next wonder material? , 2016, Nature.
[12] Michael W Deem,et al. A database of new zeolite-like materials. , 2011, Physical chemistry chemical physics : PCCP.
[13] Michael O’Keeffe,et al. The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.
[14] William J. Welch,et al. Computer-aided design of experiments , 1981 .
[15] Steve Oudot,et al. Persistence stability for geometric complexes , 2012, ArXiv.
[16] Charles H. Ward. Materials Genome Initiative for Global Competitiveness , 2012 .
[17] Peter Bubenik,et al. Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..
[18] Pawel Dlotko,et al. A persistence landscapes toolbox for topological statistics , 2014, J. Symb. Comput..
[19] Ali Sadeghi,et al. A fingerprint based metric for measuring similarities of crystalline structures. , 2015, The Journal of chemical physics.
[20] Diego A. Gómez-Gualdrón,et al. The materials genome in action: identifying the performance limits for methane storage , 2015 .
[21] Mario Valle,et al. How to quantify energy landscapes of solids. , 2009, The Journal of chemical physics.
[22] Gunnar E. Carlsson,et al. Topology and data , 2009 .
[23] Maciej Haranczyk,et al. In silico design of porous polymer networks: high-throughput screening for methane storage materials. , 2014, Journal of the American Chemical Society.
[24] Michael O’Keeffe,et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.
[25] Li-Chiang Lin,et al. Optimizing nanoporous materials for gas storage. , 2014, Physical chemistry chemical physics : PCCP.
[26] Li-Chiang Lin,et al. Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules , 2013 .
[27] S. Bhatia,et al. Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.
[28] Maciej Haranczyk,et al. Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials , 2012, J. Chem. Inf. Model..
[29] Jeffrey R. Long,et al. Evaluating metal–organic frameworks for natural gas storage , 2014 .
[30] P. A. Cheeseman,et al. Computational Discovery of New Zeolite-Like Materials , 2009 .
[31] Maciej Haranczyk,et al. Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals , 2014 .