On reduction of finite-sample variance by extended Latin hypercube sampling
暂无分享,去创建一个
[1] R. Plackett,et al. THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .
[2] R. C. Bose,et al. Orthogonal Arrays of Strength two and three , 1952 .
[3] C. R. Rao,et al. Factorial Experiments Derivable from Combinatorial Arrangements of Arrays , 1947 .
[4] J. E. H. Shaw,et al. A Quasirandom Approach to Integration in Bayesian Statistics , 1988 .
[5] A. Owen. Lattice Sampling Revisited: Monte Carlo Variance of Means Over Randomized Orthogonal Arrays , 1994 .
[6] M. Stein. Large sample properties of simulations using latin hypercube sampling , 1987 .
[7] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[8] A. Owen. A Central Limit Theorem for Latin Hypercube Sampling , 1992 .
[9] R. Serfling. Approximation Theorems of Mathematical Statistics , 1980 .
[10] Wei-Liem Loh. On Latin hypercube sampling , 1996 .
[11] E. Lehmann. Some Concepts of Dependence , 1966 .
[12] Boxin Tang. A theorem for selecting OA-based Latin hypercubes using a distance criterion , 1994 .
[13] S. M. Handcock. On cascading latin hypercube designs and additive models for experiments , 1991 .
[14] A. Owen. Controlling correlations in latin hypercube samples , 1994 .
[15] J. Galambos,et al. Bonferroni-type inequalities with applications , 1996 .
[16] R. Iman,et al. A distribution-free approach to inducing rank correlation among input variables , 1982 .
[17] H. D. Patterson. The Errors of Lattice Sampling , 1954 .
[18] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[19] Boxin Tang. Orthogonal Array-Based Latin Hypercubes , 1993 .