Role of edge atoms in the hysteretic behaviour of 3D spin crossover nanoparticles revealed by an Ising-like model

We have applied a phenomenological two-level Ising-like model to study the case of 3D coordination polymers showing strongly cooperative but incomplete spin-transition behaviour. Our numerical results focus on nanoparticles of the cyanide-bridged 3D network Fe(pyrazine)[Pt(CN)4], considering several factors (i.e. temperature, pressure), the role of short- and long-range interactions and the system size. To be consistent with the experimental studies on a nanometric scale, we used a semiexact method (Monte Carlo entropic sampling) to solve a system that contains molecules on each surface in the high-spin state (edge atoms). A preliminary analysis of the short-range antiferromagnetic case has been carried out to illustrate the three-step transition case. The effects of system size, pressure and short-/long-range interactions for incomplete spin transitions, modelled by using a 3D Ising-like model, are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

[1]  M. Dimian,et al.  Analysis of the Hysteretic Behaviour of 3D Spin Crossover Compounds by Using an Ising‐Like Model , 2013 .

[2]  A. Zewail,et al.  Single-nanoparticle phase transitions visualized by four-dimensional electron microscopy. , 2013, Nature chemistry.

[3]  Aurelian Rotaru,et al.  Nano‐electromanipulation of Spin Crossover Nanorods: Towards Switchable Nanoelectronic Devices , 2013, Advanced materials.

[4]  K. Boukheddaden,et al.  Interplay between elastic interactions in a core-shell model for spin-crossover nanoparticles , 2013 .

[5]  Azzedine Bousseksou,et al.  Spin Crossover at the Nanometre Scale , 2013 .

[6]  A. Hauser,et al.  Analysis of the Experimental Data for Pure and Diluted [FexZn1–x(bbtr)3](ClO4)2 Spin‐Crossover Solids in the Framework of a Mechanoelastic Model , 2013 .

[7]  P. Gütlich Spin Crossover – Quo Vadis?† , 2013 .

[8]  M. Dimian,et al.  Size Effect and Role of Short‐ and Long‐Range Interactions on 1D Spin‐Crossover Systems within the Framework of an Ising‐Like Model , 2013 .

[9]  J. Pavlik,et al.  Established Static Models of Spin Crossover , 2013 .

[10]  S. Iijima,et al.  Stepwise spin transition and hysteresis of a tetrameric iron(II) complex, fac-[tris(2-methylimidazol-4-ylmethylidene-n-hexylamine)]iron(II) chloride hexafluorophosphate, assembled by imidazole···chloride hydrogen bonds , 2013 .

[11]  K. Boukheddaden Static and Dynamical Aspects of a Phonon‐Induced Spin‐Crossover Transition – Local Equilibrium Approach , 2013 .

[12]  Yann Garcia,et al.  Spin state switching in iron coordination compounds , 2013, Beilstein journal of organic chemistry.

[13]  S. Miyashita,et al.  Microscopic spin-distortion model for switchable molecular solids: Spatiotemporal study of the deformation field and local stress at the thermal spin transition , 2013 .

[14]  A. Stancu,et al.  Dynamic phase transitions in the one-dimensional spin-phonon coupling model , 2013 .

[15]  M. Nakano,et al.  Update 1 of: calorimetric investigation of phase transitions occurring in molecule-based magnets. , 2013, Chemical reviews.

[16]  A. Malakis,et al.  Critical behavior of the three-dimensional Ising model with anisotropic bond randomness at the ferromagnetic-paramagnetic transition line. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  M. Dimian,et al.  Analysis of long-range interaction effects on phase transitions in two-step spin-crossover chains by using Ising-type systems and Monte Carlo entropic sampling technique , 2012 .

[18]  A. Stancu,et al.  Monte Carlo Metropolis study of cluster evolution in spin-crossover solids within the framework of a mechanoelastic model , 2012 .

[19]  Manuel Gruber,et al.  Robust spin crossover and memristance across a single molecule , 2012, Nature Communications.

[20]  S. Kitagawa,et al.  Sequestering aromatic molecules with a spin-crossover Fe(II) microporous coordination polymer. , 2012, Chemistry.

[21]  Yann Garcia,et al.  Pressure and Temperature Spin Crossover Sensors with Optical Detection , 2012, Sensors.

[22]  Aurelian Rotaru,et al.  Spin state dependence of electrical conductivity of spin crossover materials. , 2012, Chemical communications.

[23]  C. Enachescu,et al.  Size dependent thermal hysteresis in spin crossover nanoparticles reflected within a Monte Carlo based Ising-like model , 2012 .

[24]  Mian Li,et al.  High-spin versus spin-crossover versus low-spin: geometry intervention in cooperativity in a 3D polymorphic iron(II)-tetrazole MOFs system. , 2012, Chemical communications.

[25]  E. Coronado,et al.  Patterning of magnetic bimetallic coordination nanoparticles of Prussian blue derivatives by the Langmuir-Blodgett technique. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[26]  M. Tong,et al.  Incomplete Spin Crossover versus Antiferromagnetic Behavior Exhibited in Three-Dimensional Porous Fe(II)-Bis(tetrazolate) Frameworks , 2012 .

[27]  Lan-sun Zheng,et al.  Polymorphism in spin-crossover systems. , 2012, Chemical Society reviews.

[28]  S. Todo,et al.  Critical temperature and correlation length of an elastic interaction model for spin-crossover materials , 2011, 1110.6257.

[29]  A. Stancu,et al.  Size effect in spin-crossover systems investigated by FORC measurements, for surfacted [Fe(NH2-trz)3](Br)2·3H2O nanoparticles: reversible contributions and critical size , 2011 .

[30]  G. Clarkson,et al.  Isomeric Fe(II) MOFs: from a diamond-framework spin-crossover material to a 2D hard magnet. , 2011, Chemical communications.

[31]  A. Bousseksou,et al.  Matrix-dependent cooperativity in spin crossover Fe(pyrazine)Pt(CN)4 nanoparticles. , 2011, Chemical communications.

[32]  D. Chernyshov,et al.  Metastable state of the photomagnetic Prussian blue analog K0.3Co(Fe(CN)6)0.77·3.6H2O investigated by various techniques , 2011 .

[33]  L. Chassagne,et al.  Two-dimensional atom-phonon coupling model for spin conversion: role of metastable states , 2011 .

[34]  Kamel Boukheddaden,et al.  Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study , 2011 .

[35]  Azzedine Bousseksou,et al.  Molecular spin crossover phenomenon: recent achievements and prospects. , 2011, Chemical Society reviews.

[36]  Eugenio Coronado,et al.  Room‐Temperature Electrical Addressing of a Bistable Spin‐Crossover Molecular System , 2011, Advanced materials.

[37]  A. Stancu,et al.  Study of the relaxation in diluted spin crossover molecular magnets in the framework of the mechano-elastic model , 2011 .

[38]  W. Nicolazzi,et al.  Cooperative spin crossover phenomena in [Fe(NH2trz)3](tosylate)2 nanoparticles. , 2010, Chemical communications.

[39]  P. Středa Publisher's Note: Anomalous Hall conductivity: Local orbitals approach [Phys. Rev. B 82, 045115 (2010)] , 2010 .

[40]  P. Gütlich,et al.  Spin Crossover Phenomenon in Nanocrystals and Nanoparticles of [Fe(3-Fpy)2M(CN)4] (MII = Ni, Pd, Pt) Two-Dimensional Coordination Polymers , 2010 .

[41]  Marinela M. Dîrtu,et al.  Insights into the origin of cooperative effects in the spin transition of [Fe(NH2trz)3](NO3)2: the role of supramolecular interactions evidenced in the crystal structure of [Cu(NH2trz)3](NO3)2.H2O. , 2010, Inorganic chemistry.

[42]  M. Dimian,et al.  Excited metastables electronic spin states in spin crossover compounds studies by atom-phonon coupling model: Gradual and two-step transition cases , 2010 .

[43]  T. Kosone,et al.  Unprecedented three-step spin-crossover transition in new 2-dimensional coordination polymer {Fe(II)(4-methylpyridine)(2)[Au(I)(CN)(2)](2)}. , 2010, Dalton transactions.

[44]  S. Demeshko,et al.  Two-step spin crossover in the mononuclear iron(II) complex [Fe(II)(L)(2)(NCS)(2)] (L = 2,5-di-(2-pyridyl)-1,3,4-thiadiazole). , 2010, Dalton transactions.

[45]  W. Nicolazzi,et al.  Photoinduced phase separation in spin-crossover materials: Numerical simulation of a dynamic photocrystallographic experiment , 2009 .

[46]  Yann Garcia,et al.  Prediction of the spin transition temperature in Fe(II) one-dimensional coordination polymers: an anion based database. , 2009, Inorganic chemistry.

[47]  A. Stancu,et al.  Monte Carlo simulations for 1- and 2D spin crossover compounds using the atom-phonon coupling model , 2009 .

[48]  A. Spek,et al.  Influence of Sample Preparation, Temperature, Light, and Pressure on the Two-Step Spin Crossover Mononuclear Compound [Fe(bapbpy)(NCS)2] , 2009 .

[49]  K. Chapman,et al.  Elucidating the mechanism of a two-step spin transition in a nanoporous metal-organic framework. , 2008, Journal of the American Chemical Society.

[50]  Odile Stéphan,et al.  Spin-crossover coordination nanoparticles. , 2008, Inorganic chemistry.

[51]  Yann Garcia,et al.  Rapid cooling experiments and use of an anionic nuclear probe to sense the spin transition of the 1D coordination polymers [Fe(NH2trz)3]SnF6n x H2O (NH2trz=4-amino-1,2,4-triazole). , 2008, Chemistry.

[52]  A. Stancu,et al.  Size and pressure effects in the atom-phonon coupling model for spin crossover compounds , 2008 .

[53]  S. Miyashita,et al.  Monte Carlo simulation of pressure-induced phase transitions in spin-crossover materials. , 2007, Physical review letters.

[54]  M. Halcrow The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands , 2007 .

[55]  R. Bronisz Tetrazol-2-yl as a donor group for incorporation of a spin-crossover function based on Fe(II) ions into a coordination network. , 2007, Inorganic chemistry.

[56]  G. Molnár,et al.  Spin crossover and photomagnetism in dinuclear iron(II) compounds , 2007 .

[57]  J. Linares,et al.  Effects of Intra- and Intercenter Interactions in Spin Crossover: Application of the Density Matrix Method to the Nonequilibrium Low-Spin↔High-Spin Transitions Induced by Light , 2007 .

[58]  Marinela M. Dîrtu,et al.  Iron(II) spin transition 1,2,4-triazole chain compounds with novel inorganic fluorinated counteranions , 2007 .

[59]  Eugenio Coronado,et al.  Bistable Spin‐Crossover Nanoparticles Showing Magnetic Thermal Hysteresis near Room Temperature , 2007 .

[60]  J. Real,et al.  Dinuclear iron(II) spin crossover compounds: singular molecular materials for electronics , 2006 .

[61]  G. Molnár,et al.  Two-step spin-crossover phenomenon under high pressure in the coordination polymer Fe(3-methylpyridine)2[Ni(CN)4] , 2006 .

[62]  P. Gütlich,et al.  Pressure effect studies on spin crossover systems , 2005 .

[63]  S. Miyashita,et al.  Structures of Metastable States in Phase Transitions with a High-Spin Low-Spin Degree of Freedom , 2005, cond-mat/0507362.

[64]  Jean-François Létard,et al.  Towards spin crossover applications , 2004 .

[65]  A. Hauser Light-induced spin crossover and the high-spin→low-spin relaxation , 2004 .

[66]  S. Miyashita,et al.  Arrhenius Monte Carlo study of two-step spin crossover: Equilibrium and relaxation paths , 2003 .

[67]  G. Molnár,et al.  Observation of a thermal hysteresis loop in the dielectric constant of spin crossover complexes: towards molecular memory devices , 2003 .

[68]  C. Enachescu,et al.  Monte Carlo entropic sampling applied to spin crossover solids: the squareness of the thermal hysteresis loop , 2003 .

[69]  K. Boukheddaden,et al.  Dynamical Ising-like model for the two-step spin-crossover systems , 2003 .

[70]  J. McGarvey,et al.  Raman Spectroscopic Study of Pressure Effects on the Spin-Crossover Coordination Polymers Fe(Pyrazine)[M(CN)4]·2H2O (M = Ni, Pd, Pt). First Observation of a Piezo-Hysteresis Loop at Room Temperature , 2003 .

[71]  M. Goiran,et al.  Dynamic response of the spin-crossover solid C o ( H 2 ( fsa ) 2 e n ) ( py ) 2 to a pulsed magnetic field , 2002 .

[72]  A. Spek,et al.  A new 3-D polymeric spin transition compound: [tris(1,4-bis(tetrazol-1-yl)butane-N1,N1′)iron(II)] bis(perchlorate) , 2001 .

[73]  K. Boukheddaden,et al.  One-dimensional Ising-like systems: an analytical investigation of the static and dynamic properties, applied to spin-crossover relaxation , 2000 .

[74]  J. Linares,et al.  Effect of hydrostatic pressure on phase transitions in spin-crossover 1D systems , 2000 .

[75]  P. Gütlich,et al.  Correlations of the distribution of spin states in spin crossover compounds , 1999 .

[76]  François Varret,et al.  Analytical solution of 1D Ising-like systems modified by weak long range interaction , 1999 .

[77]  A. Bousseksou,et al.  Spin Crossover in the 2,2‘-Bipyrimidine- (bpym-) Bridged Iron(II) Complexes [Fe(L)(NCX)2]2(bpym) (L = 2, 2‘-Bithiazoline (bt) and bpym; X = S, Se). X-ray Absorption Spectroscopy, Magnetic Susceptibility, Calorimetric, and Mössbauer Spectroscopy Studies , 1997 .

[78]  A. Bousseksou,et al.  Two-step spin conversion of [FeII(5-NO2-sal-N(1,4,7,10))]: 292, 153, and 103 K x-ray crystal and molecular structure, infrared, magnetic, Moessbauer, calorimetric, and theoretical studies , 1994 .

[79]  Lee,et al.  New Monte Carlo algorithm: Entropic sampling. , 1993, Physical review letters.

[80]  A. Bousseksou,et al.  Ising-like model for the two step spin-crossover of binuclear molecules , 1993 .

[81]  A. Bousseksou,et al.  Ising-like model for the two-step spin-crossover , 1992 .

[82]  A. Bousseksou,et al.  Two-step spin crossover in the new dinuclear compound [Fe(bt)(NCS)2]2bpym, with bt = 2,2'-Bi-2-thiazoline and bpym = 2,2'-bipyrimidine : experimental investigation and theoretical approach , 1992 .

[83]  K. Boukheddaden,et al.  Spin transition in iron Fe(py)2L(NCS)2 complexes where py = pyridine and L = 2,2'-bipyrimidine (bpym) and 1,10-phenanthroline (phen): magnetic, calorimetric, and Moessbauer-effect investigation. Crystal structure of [Fe(py)2bpym(NCS)2].0.25py , 1990 .

[84]  Philipp Gütlich,et al.  Light-induced excited-spin-state trapping in iron(II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study , 1985 .

[85]  H. Goodwin,et al.  The discontinuous high-spin (5T2) .dblharw. low-spin (1A1) transition in solid bis(1,10-phenanthroline-2-carbaldehyde phenylhydrazone)iron(II) bis(tetrafluoroborate): hysteresis effects, concurrent crystallographic phase change, entropy of the transition, and effect of pressure , 1984 .

[86]  P. Gütlich,et al.  Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron (II) tetrafluoroborate spin-crossover system , 1984 .

[87]  Philipp Gütlich,et al.  Spin crossover in iron(II)-complexes , 1981 .