HRMC: Hybrid Reverse Monte Carlo method with silicon and carbon potentials

Fortran 77 code is presented for a hybrid method of the Metropolis Monte Carlo (MMC) and Reverse Monte Carlo (RMC) for the simulation of amorphous silicon and carbon structures. In additional to the usual constraints of the pair correlation functions and average coordination, the code also incorporates an optional energy constraint. This energy constraint is in the form of either the Environment Dependent Interatomic Potential (applicable to silicon and carbon) and the original and modified Stillinger-Weber potentials (applicable to silicon). The code also allows porous systems to be modeled via a constraint on porosity and internal surface area using a novel restriction on the available simulation volume.

[1]  J. Rouzaud,et al.  Improved Molecular Models for Porous Carbons , 2001 .

[2]  S. Trabesinger,et al.  Reverse Monte Carlo studies of nanoporous carbon from TiC , 2005, Journal of Physics: Condensed Matter.

[3]  J. Hazemann,et al.  Reverse Monte Carlo analysis of the local order in liquid Ge 0.15 Te 0.85 alloys combining neutron scattering and x-ray absorption spectroscopy , 2005 .

[4]  L. Pusztai,et al.  Modelling the structure of Ni65B35 metallic glass by reverse Monte Carlo simulation , 1993 .

[5]  I. Snook,et al.  Modeling of structure and porosity in amorphous silicon systems using Monte Carlo methods. , 2007, The Journal of chemical physics.

[6]  J. L. Robertson,et al.  High Resolution Radial Distribution Function of Pure Amorphous Silicon , 1999 .

[7]  I. Snook,et al.  The structure of disordered carbon solids studied using a hybrid reverse Monte Carlo algorithm , 2005 .

[8]  K. Gubbins,et al.  Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo , 2000 .

[9]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[10]  Alan K. Soper,et al.  Empirical potential Monte Carlo simulation of fluid structure , 1996 .

[11]  Irene Yarovsky,et al.  Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo , 2002 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  R. Mcgreevy,et al.  Reverse Monte Carlo modelling , 2001 .

[14]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[15]  Franzblau Ds,et al.  Computation of ring statistics for network models of solids. , 1991 .

[16]  K. Gubbins,et al.  Molecular modeling and adsorption properties of porous carbons , 2006 .

[17]  I. Snook,et al.  Curved-surface atomic modeling of nanoporous carbon , 2007 .

[18]  J. Rouzaud,et al.  Structural modeling of porous carbons: Constrained reverse Monte Carlo method , 2003 .

[19]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[20]  Gerard T. Barkema,et al.  Fitting the Stillinger–Weber potential to amorphous silicon , 2001 .

[21]  N. Marks Generalizing the environment-dependent interaction potential for carbon , 2000 .

[22]  I. Kaban,et al.  Determination of partial pair distribution functions in amorphous Ge15Te85 by simultaneous RMC simulation of diffraction and EXAFS data , 2007 .

[23]  L. Tjeng,et al.  Theoretical description of the Fano effect in the angle-integrated valence-band photoemission of paramagnetic solids , 2001 .

[24]  I. Snook,et al.  Structural analysis of carbonaceous solids using an adapted reverse Monte Carlo algorithm , 2003 .

[25]  I. Snook,et al.  REVERSE MONTE CARLO ANALYSIS OF THE STRUCTURE OF GLASSY CARBON USING ELECTRON-MICROSCOPY DATA , 1998 .

[26]  K. Gubbins,et al.  Structure of saccharose-based carbon and transport of confined fluids: hybrid reverse Monte Carlo reconstruction and simulation studies , 2006 .

[27]  K. Gubbins,et al.  Molecular modeling of porous carbons using the hybrid reverse Monte Carlo method. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[28]  J. K. Walters,et al.  Progress in modeling the chemical bonding in tetrahedral amorphous carbon , 1998 .

[29]  I. Snook,et al.  Monte Carlo based modeling of carbon nanostructured surfaces , 2005 .

[30]  I. Snook,et al.  Microstructure of an industrial char by diffraction techniques and Reverse Monte Carlo modelling , 2004 .