Models for Multiplicative Noise Removal

[1]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[2]  Jun Liu,et al.  A convex total generalized variation regularized model for multiplicative noise and blur removal , 2016, Appl. Math. Comput..

[3]  Michael K. Ng,et al.  Multiplicative Noise Removal via a Learned Dictionary , 2012, IEEE Transactions on Image Processing.

[4]  Tieyong Zeng,et al.  A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise , 2013, SIAM J. Imaging Sci..

[5]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[6]  Stefan Harmeling,et al.  Image denoising: Can plain neural networks compete with BM3D? , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[8]  Annika Lang,et al.  A new similarity measure for nonlocal filtering in the presence of multiplicative noise , 2012, Comput. Stat. Data Anal..

[9]  Myung-joo Kang,et al.  Nonconvex TGV regularization model for multiplicative noise removal with spatially varying parameters , 2019, Inverse Problems & Imaging.

[10]  Guy Gilboa,et al.  Nonlocal evolutions for image regularization , 2007, Electronic Imaging.

[11]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Jianing Shi,et al.  A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008, SIAM J. Imaging Sci..

[13]  Jean-Luc Starck,et al.  Stein Block Thresholding For Image Denoising , 2008, 0809.3486.

[14]  Alessandro Foi,et al.  Optimal Inversion of the Anscombe Transformation in Low-Count Poisson Image Denoising , 2011, IEEE Transactions on Image Processing.

[15]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[16]  Zhengmeng Jin,et al.  Analysis of a new variational model for multiplicative noise removal , 2010 .

[17]  Yiqiu Dong,et al.  Cauchy Noise Removal by Nonconvex ADMM with Convergence Guarantees , 2017, Journal of Scientific Computing.

[18]  Mohamed-Jalal Fadili,et al.  Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients , 2008, Journal of Mathematical Imaging and Vision.

[19]  Florence Tupin,et al.  Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights , 2009, IEEE Transactions on Image Processing.

[20]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[21]  Liang Xiao,et al.  A Weberized Total Variation Regularization-Based Image Multiplicative Noise Removal Algorithm , 2010, EURASIP J. Adv. Signal Process..

[22]  Xiangchu Feng,et al.  Multiplicative noise removal via sparse and redundant representations over learned dictionaries and total variation , 2012, Signal Process..

[23]  Myungjoo Kang,et al.  An Exp Model with Spatially Adaptive Regularization Parameters for Multiplicative Noise Removal , 2018, J. Sci. Comput..

[24]  Lixin Shen,et al.  Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm , 2016 .

[25]  Wen Chen,et al.  A New Variational Approach for Multiplicative Noise and Blur Removal , 2017, PloS one.

[26]  Guodong Wang,et al.  Deep CNN Denoiser prior for multiplicative noise removal , 2018, Multimedia Tools and Applications.

[27]  Hyenkyun Woo,et al.  A New Multiplicative Denoising Variational Model Based on $m$th Root Transformation , 2012, IEEE Transactions on Image Processing.

[28]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[29]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[30]  Thomas Brox,et al.  On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex Optimization in Computer Vision , 2015, SIAM J. Imaging Sci..

[31]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[32]  Lizhi Cheng,et al.  Spatially Adapted Total Variation Model to Remove Multiplicative Noise , 2012, IEEE Transactions on Image Processing.

[33]  Wen Chen,et al.  A new variational approach for restoring images with multiplicative noise , 2016, Comput. Math. Appl..

[34]  Jean-Michel Morel,et al.  Secrets of image denoising cuisine* , 2012, Acta Numerica.

[35]  Vishal M. Patel,et al.  SAR Image Despeckling Using a Convolutional Neural Network , 2017, IEEE Signal Processing Letters.

[36]  Peyman Milanfar,et al.  Is Denoising Dead? , 2010, IEEE Transactions on Image Processing.

[37]  Gabriele Steidl,et al.  Multivariate Myriad Filters Based on Parameter Estimation of Student-t Distributions , 2018, SIAM J. Imaging Sci..

[38]  Fawwaz T. Ulaby,et al.  Statistical properties of logarithmically transformed speckle , 2002, IEEE Trans. Geosci. Remote. Sens..

[39]  Yunjin Chen,et al.  Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Stanley Osher,et al.  Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .

[41]  Tieyong Zeng,et al.  Multiplicative Noise Removal Based on Unbiased Box-Cox Transformation , 2017 .

[42]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[43]  Chaomin Shen,et al.  Image restoration combining a total variational filter and a fourth-order filter , 2007, J. Vis. Commun. Image Represent..

[44]  Dirk H. Hoekman Speckle ensemble statistics of logarithmically scaled data [radar] , 1991, IEEE Trans. Geosci. Remote. Sens..

[45]  Antonio Valdovinos,et al.  Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems , 2010, EURASIP J. Adv. Signal Process..

[46]  Ruiqiang He,et al.  Root-transformation based multiplicative denoising model and its statistical analysis , 2018, Neurocomputing.

[47]  Hyenkyun Woo,et al.  Two-Level Convex Relaxed Variational Model for Multiplicative Denoising , 2013, SIAM J. Imaging Sci..

[48]  George Baciu,et al.  Nonconvex sparse regularizer based speckle noise removal , 2013, Pattern Recognit..

[49]  Jérôme Darbon,et al.  SAR Image Regularization With Fast Approximate Discrete Minimization , 2009, IEEE Transactions on Image Processing.

[50]  Yingkui Du,et al.  An Adaptive Fractional-Order Variation Method for Multiplicative Noise Removal , 2016, J. Inf. Sci. Eng..

[51]  L. Shao,et al.  From Heuristic Optimization to Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising Algorithms , 2014, IEEE Transactions on Cybernetics.

[52]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[53]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[54]  Alessandro Foi,et al.  Noise Parameter Mismatch in Variance Stabilization, With an Application to Poisson–Gaussian Noise Estimation , 2014, IEEE Transactions on Image Processing.

[55]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[56]  Antonin Chambolle,et al.  An introduction to continuous optimization for imaging , 2016, Acta Numerica.

[57]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[58]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[59]  Mohammad Abolhassani,et al.  Speckle noise reduction by division and digital processing of a hologram , 2012 .

[60]  Yonghong Wu,et al.  Analysis of a new variational model for image multiplicative denoising , 2013 .

[61]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[62]  F. Ulaby,et al.  Handbook of radar scattering statistics for terrain , 1989 .

[63]  Mila Nikolova,et al.  Fast Nonconvex Nonsmooth Minimization Methods for Image Restoration and Reconstruction , 2010, IEEE Transactions on Image Processing.

[64]  Michael K. Ng,et al.  A New Convex Optimization Model for Multiplicative Noise and Blur Removal , 2014, SIAM J. Imaging Sci..