Cardiac MRI Segmentation Using Mutual Context Information from Left and Right Ventricle

In this paper, we propose a graphcut method to segment the cardiac right ventricle (RV) and left ventricle (LV) by using context information from each other. Contextual information is very helpful in medical image segmentation because the relative arrangement of different organs is the same. In addition to the conventional log-likelihood penalty, we also include a “context penalty” that captures the geometric relationship between the RV and LV. Contextual information for the RV is obtained by learning its geometrical relationship with respect to the LV. Similarly, RV provides geometrical context information for LV segmentation. The smoothness cost is formulated as a function of the learned context which helps in accurate labeling of pixels. Experimental results on real patient datasets from the STACOM database show the efficacy of our method in accurately segmenting the LV and RV. We also conduct experiments on simulated datasets to investigate our method’s robustness to noise and inaccurate segmentations.

[1]  Alejandro F. Frangi,et al.  Three-dimensional modeling for functional analysis of cardiac images, a review , 2001, IEEE Transactions on Medical Imaging.

[2]  Martial Hebert,et al.  Discriminative random fields: a discriminative framework for contextual interaction in classification , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[3]  Paul Suetens,et al.  Automatic 3-D Breath-Hold Related Motion Correction of Dynamic Multislice MRI , 2010, IEEE Transactions on Medical Imaging.

[4]  Alistair A. Young,et al.  The Cardiac Atlas Project—an imaging database for computational modeling and statistical atlases of the heart , 2011, Bioinform..

[5]  Daniel Rueckert,et al.  Construction of a 4D Statistical Atlas of the Cardiac Anatomy and Its Use in Classification , 2005, MICCAI.

[6]  B. Cowan,et al.  Model-based Graph Cut Method for Segmentation of the Left Ventricle , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[7]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[8]  Dwarikanath Mahapatra,et al.  Cardiac Image Segmentation from Cine Cardiac MRI Using Graph Cuts and Shape Priors , 2013, Journal of Digital Imaging.

[9]  Milan Sonka,et al.  Time-Continuous Segmentation of Cardiac Image Sequences Using Active Appearance Motion Models , 2001, IPMI.

[10]  Carissa G. Fonseca,et al.  Rationale and Design for the Defibrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation (DETERMINE) Trial , 2009, Journal of cardiovascular electrophysiology.

[11]  Milan Sonka,et al.  4-D Cardiac MR Image Analysis: Left and Right Ventricular Morphology and Function , 2010, IEEE Transactions on Medical Imaging.

[12]  Dwarikanath Mahapatra Joint Segmentation and Groupwise Registration of Cardiac Perfusion Images Using Temporal Information , 2012, Journal of Digital Imaging.

[13]  Wiro J Niessen,et al.  Automatic image‐driven segmentation of the ventricles in cardiac cine MRI , 2008, Journal of magnetic resonance imaging : JMRI.

[14]  James S. Duncan,et al.  Segmentation of left ventricle from 3D cardiac MR image sequences using a subject-specific dynamical model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Dwarikanath Mahapatra Groupwise registration of dynamic cardiac perfusion images using temporal dynamics and segmentation information , 2012, Medical Imaging: Image Processing.

[16]  W. J. Hedley,et al.  Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. , 2000, Radiology.

[17]  Caroline Petitjean,et al.  A review of segmentation methods in short axis cardiac MR images , 2011, Medical Image Anal..

[18]  Michel Couprie,et al.  Segmentation of 4D cardiac MRI: Automated method based on spatio-temporal watershed cuts , 2010, Image Vis. Comput..

[19]  Wei Li,et al.  Learning Image Context for Segmentation of Prostate in CT-Guided Radiotherapy , 2011, MICCAI.

[20]  José M. F. Moura,et al.  STACS: new active contour scheme for cardiac MR image segmentation , 2005, IEEE Transactions on Medical Imaging.

[21]  Alan S. Willsky,et al.  Segmenting and Tracking the Left Ventricle by Learning the Dynamics in Cardiac Images , 2005, IPMI.

[22]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Timothy F. Cootes,et al.  A Minimum Description Length Approach to Statistical Shape Modelling , 2001 .

[24]  Katja Bühler,et al.  Improving Segmentation of the Left Ventricle Using a Two-Component Statistical Model , 2006, MICCAI.

[25]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Zhuowen Tu,et al.  Auto-context and its application to high-level vision tasks , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  Nikos Paragios,et al.  A Variational Approach for the Segmentation of the Left Ventricle in Cardiac Image Analysis , 2002, International Journal of Computer Vision.

[28]  F. Denstman,et al.  Crohn disease: state of the art. , 1997, Radiology.

[29]  Shuo Li,et al.  Graph Cuts with Invariant Object-Interaction Priors: Application to Intervertebral Disc Segmentation , 2011, IPMI.

[30]  Jürgen Weese,et al.  Automated segmentation of the left ventricle in cardiac MRI , 2004, Medical Image Anal..

[31]  Yuri Boykov,et al.  Globally optimal segmentation of multi-region objects , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[32]  Yongmin Kim,et al.  A methodology for evaluation of boundary detection algorithms on medical images , 1997, IEEE Transactions on Medical Imaging.

[33]  Antonio Torralba,et al.  Graphical Model For Recognizing Scenes and Objects. , 2003, NIPS 2003.

[34]  Nikos,et al.  Graph-based knowledge-driven discrete segmentation of the left ventricle , 2009, ISBI 2009.

[35]  Dwarikanath Mahapatra,et al.  Orientation Histograms as Shape Priors for Left Ventricle Segmentation Using Graph Cuts , 2011, MICCAI.

[36]  J Paul Finn,et al.  Accurate quantification of right ventricular mass at MR imaging by using cine true fast imaging with steady-state precession: study in dogs. , 2004, Radiology.

[37]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[38]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[39]  Junjie Bai,et al.  Surface-Region Context in Optimal Multi-object Graph-Based Segmentation: Robust Delineation of Pulmonary Tumors , 2011, IPMI.

[40]  Milan Sonka,et al.  Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images , 2001, IEEE Transactions on Medical Imaging.

[41]  Alexei A. Efros,et al.  Putting Objects in Perspective , 2006, CVPR.

[42]  Dwarikanath Mahapatra,et al.  Integrating Segmentation Information for Improved MRF-Based Elastic Image Registration , 2012, IEEE Transactions on Image Processing.

[43]  Simon K. Warfield,et al.  Left Ventricular Segmentation Challenge from Cardiac MRI: A Collation Study , 2011, STACOM.

[44]  Paul F. Whelan,et al.  Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge , 2006, Comput. Medical Imaging Graph..

[45]  Timothy F. Cootes,et al.  A minimum description length approach to statistical shape modeling , 2002, IEEE Transactions on Medical Imaging.

[46]  Juha Koikkalainen,et al.  Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images , 2004, Medical Image Anal..

[47]  Marie-Pierre Jolly,et al.  Automatic Recovery of the Left Ventricular Blood Pool in Cardiac Cine MR Images , 2008, MICCAI.

[48]  Dwarikanath Mahapatra,et al.  Joint Registration and Segmentation of Dynamic Cardiac Perfusion Images Using MRFs , 2010, MICCAI.

[49]  Hervé Delingette,et al.  Cardiac Motion Recovery and Boundary Conditions Estimation by Coupling an Electromechanical Model and Cine-MRI Data , 2009, FIMH.

[50]  S. Allender,et al.  European cardiovascular disease statistics , 2008 .