Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations

In this paper, we determine numerically a large class of equilibrium configurations of an elastic two-dimensional continuous pantographic sheet in three-dimensional deformation consisting of two families of fibers which are parabolic prior to deformation. The fibers are assumed (1) to be continuously distributed over the sample, (2) to be endowed of bending and torsional stiffnesses, and (3) tied together at their points of intersection to avoid relative slipping by means of internal (elastic) pivots. This last condition characterizes the system as a pantographic lattice (Alibert and Della Corte in Zeitschrift für angewandte Mathematik und Physik 66(5):2855–2870, 2015; Alibert et al. in Math Mech Solids 8(1):51–73, 2003; dell’Isola et al. in Int J Non-Linear Mech 80:200–208, 2016; Int J Solids Struct 81:1–12, 2016). The model that we employ here, developed by Steigmann and dell’Isola (Acta Mech Sin 31(3):373–382, 2015) and first investigated in Giorgio et al. (Comptes rendus Mecanique 2016, doi:10.1016/j.crme.2016.02.009), is applicable to fiber lattices in which three-dimensional bending, twisting, and stretching are significant as well as a resistance to shear distortion, i.e., to the angle change between the fibers. Some relevant numerical examples are exhibited in order to highlight the main features of the model adopted: In particular, buckling and post-buckling behaviors of pantographic parabolic lattices are investigated. The fabric of the metamaterial presented in this paper has been conceived to resist more effectively in the extensional bias tests by storing more elastic bending energy and less energy in the deformation of elastic pivots: A comparison with a fabric constituted by beams which are straight in the reference configuration shows that the proposed concept is promising.

[1]  David J. Steigmann,et al.  A model for frictional slip in woven fabrics , 2003 .

[2]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[3]  C. Wang,et al.  Analytical length scale calibration of nonlocal continuum from a microstructured buckling model , 2014 .

[4]  Leopoldo Greco,et al.  Consistent tangent operator for an exact Kirchhoff rod model , 2015 .

[5]  Noël Challamel,et al.  Hencky Bar-Chain Model for Buckling and Vibration of Beams with Elastic End Restraints , 2015 .

[6]  Victor A. Eremeyev,et al.  Material symmetry group and constitutive equations of micropolar anisotropic elastic solids , 2016 .

[7]  Luca Placidi,et al.  A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model , 2016 .

[8]  Gabriel Wittum,et al.  Remodelling in statistically oriented fibre-reinforced materials and biological tissues , 2015 .

[9]  A. Cazzani,et al.  On some mixed finite element methods for plane membrane problems , 1997 .

[10]  Ugo Andreaus,et al.  Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation , 2016 .

[11]  F. D’Annibale,et al.  On the contribution of Angelo Luongo to Mechanics: in honor of his 60th birthday , 2015 .

[12]  J. Ganghoffer,et al.  Construction of micropolar continua from the asymptotic homogenization of beam lattices , 2012 .

[13]  Emilio Turco,et al.  A three-dimensional B-spline boundary element , 1998 .

[14]  Luisa Pagnini,et al.  Reliability analysis of wind-excited structures , 2010 .

[15]  A Carcaterra,et al.  Vibration absorption using non-dissipative complex attachments with impacts and parametric stiffness. , 2009, The Journal of the Acoustical Society of America.

[16]  Tomasz Lekszycki,et al.  Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients , 2015 .

[17]  CLEMENTE CESARANO,et al.  Humbert polynomials and functions in terms of Hermite polynomials towards applications to wave propagation , 2014 .

[18]  Claude Boutin,et al.  Non-local dynamic behavior of linear fiber reinforced materials , 2012 .

[19]  Nicola Luigi Rizzi,et al.  The effects of warping on the postbuckling behaviour of thin-walled structures , 2011 .

[20]  N. Rizzi,et al.  A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis , 2016 .

[21]  Alessandro Della Corte,et al.  Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: Perspectives of continuum modeling via higher gradient continua , 2016 .

[22]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[23]  Nicola Rizzi,et al.  The effects of warping constraints on the buckling of thin-walled structures , 2010 .

[24]  Ugo Andreaus,et al.  Friction oscillator excited by moving base and colliding with a rigid or deformable obstacle , 2002 .

[25]  N. Roveri,et al.  Damage detection in structures under traveling loads by Hilbert–Huang transform , 2012 .

[26]  Maurizio Porfiri,et al.  Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers , 2004, Int. J. Circuit Theory Appl..

[27]  Giovanni Solari,et al.  Serviceability criteria for wind-induced acceleration and damping uncertainties , 1998 .

[28]  Stefano Gabriele,et al.  On the Imperfection Sensitivity ofThin-Walled Frames , 2012 .

[29]  A.P.S. Selvadurai,et al.  Concentrated loading of a fibre-reinforced composite plate: Experimental and computational modeling of boundary fixity , 2014 .

[30]  Antonio Tralli,et al.  A four-node hybrid assumed-strain finite element for laminated composite plates , 2005 .

[31]  Free vibrations of finite-memory material beams , 1993 .

[32]  Francesco dell’Isola,et al.  Pattern formation in the three-dimensional deformations of fibered sheets , 2015 .

[33]  Francesco dell’Isola,et al.  Geometrically nonlinear higher-gradient elasticity with energetic boundaries , 2013 .

[34]  Antonio Carcaterra,et al.  An iterative rational fraction polynomial technique for modal identification , 1995 .

[35]  Angelo Luongo,et al.  Mode Localization in Dynamics and Buckling of Linear Imperfect Continuous Structures , 2001 .

[36]  Anil Misra,et al.  Reliability analysis of drilled shaft behavior using finite difference method and Monte Carlo simulation , 2007 .

[37]  Stéphane Hans,et al.  DYNAMICS OF DISCRETE FRAMED STRUCTURES: A UNIFIED HOMOGENIZED DESCRIPTION , 2008 .

[38]  Alfio Grillo,et al.  Poroelastic materials reinforced by statistically oriented fibres—numerical implementation and application to articular cartilage , 2014 .

[39]  Cung Huy Nguyen,et al.  Aeroelastic instability and wind-excited response of complex lighting poles and antenna masts , 2015 .

[40]  A.P.S. Selvadurai,et al.  Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: Experiments, theory and computations , 2012 .

[41]  Antonio Carcaterra,et al.  Trapping of vibration energy into a set of resonators: Theory and application to aerospace structures , 2012 .

[42]  David J. Steigmann,et al.  Equilibrium of elastic nets , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[43]  Francesco dell’Isola,et al.  Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution , 2016 .

[44]  Jean-François Ganghoffer,et al.  Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization , 2013 .

[45]  Pierre Seppecher,et al.  Linear elastic trusses leading to continua with exotic mechanical interactions , 2011 .

[46]  Dionisio Del Vescovo,et al.  Theoretical and experimental dynamic analysis aimed at the improvement of an acoustic method for fresco detachment diagnosis , 2009 .

[47]  Pierre Seppecher,et al.  A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium , 1997 .

[48]  Francesco dell’Isola,et al.  Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices , 2015 .

[49]  A. Della Corte,et al.  The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Francesco dell’Isola,et al.  The complete works of Gabrio Piola: Volume I Commented English Translation - English and Italian Edition , 2014 .

[51]  Francesco dell’Isola,et al.  A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio‐resorbable materials , 2012 .

[52]  Philip G. Harrison,et al.  Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh , 2016 .

[53]  Giuseppe Piccardo,et al.  Non-linear discrete models for the stochastic analysis of cables in turbulent wind , 2010 .

[54]  Luisa-Carlotta Pagnini,et al.  Model reliability and propagation of frequency and damping uncertainties in the dynamic along-wind response of structures , 1996 .

[55]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[56]  J. Ganghoffer,et al.  Homogenized elastoplastic response of repetitive 2D lattice truss materials , 2014 .

[57]  Francesco dell’Isola,et al.  Buckling modes in pantographic lattices , 2016 .

[58]  Giuseppe Piccardo,et al.  On the effect of twist angle on nonlinear galloping of suspended cables , 2009 .

[59]  Tomasz Lekszycki,et al.  The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids , 2017 .

[60]  N. Rizzi,et al.  On the Imperfection Sensitivity of Thin-Walled Frames , 2012 .

[61]  Francesco dell’Isola,et al.  Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching , 2015 .

[62]  Ugo Andreaus,et al.  Soft-impact dynamics of deformable bodies , 2013 .

[63]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[64]  Luca Placidi,et al.  A microscale second gradient approximation of the damage parameter of quasi‐brittle heterogeneous lattices , 2014 .

[65]  Victor A. Eremeyev,et al.  Material symmetry group of the non-linear polar-elastic continuum , 2012 .

[66]  Luca Placidi,et al.  A full Stokes ice flow model for the vicinity of Dome Fuji, Antarctica, with induced anisotropy and fabric evolution , 2009 .

[67]  Flavio Stochino,et al.  Constitutive models for strongly curved beams in the frame of isogeometric analysis , 2016 .

[68]  Leopoldo Greco,et al.  On the force density method for slack cable nets , 2012 .

[69]  Andrea Freda,et al.  Effects of free-stream turbulence and corner shape on the galloping instability of square cylinders , 2013 .

[70]  Giuseppe Ruta,et al.  Effects of Warping Constraints and Lateral Restraint on the Buckling of Thin-Walled Frames , 2009 .

[71]  Leopoldo Greco,et al.  An implicit G1 multi patch B-spline interpolation for Kirchhoff–Love space rod , 2014 .

[72]  Gabriel Wittum,et al.  Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials , 2012 .

[73]  J. Ganghoffer,et al.  A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure , 2013, Biomechanics and Modeling in Mechanobiology.

[74]  N. Roveri,et al.  Tire grip identification based on strain information: Theory and simulations , 2013 .

[75]  On the role of grain growth, recrystallization and polygonization in a continuum theory for anisotropic ice sheets , 2004, Annals of Glaciology.

[76]  Giuseppe Ruta,et al.  A beam model for the flexural–torsional buckling of thin-walled members with some applications , 2008 .

[77]  P. Seppecher,et al.  Determination of the Closure of the Set of Elasticity Functionals , 2003 .

[78]  N. Olhoff,et al.  Modelling and identification of viscoelastic properties of vibrating sandwich beams , 1992 .

[79]  Luisa Pagnini,et al.  The three-hinged arch as an example of piezomechanic passive controlled structure , 2016 .

[80]  H. Altenbach,et al.  The influence of surface tension on the effective stiffness of nanosize plates , 2009 .

[81]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[82]  Ivan Giorgio,et al.  Euromech 563 Cisterna di Latina 17–21 March 2014 Generalized continua and their applications to the design of composites and metamaterials: A review of presentations and discussions , 2017 .

[83]  David J. Steigmann,et al.  Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist , 2012 .

[84]  Leopoldo Greco,et al.  An isogeometric implicit G1 mixed finite element for Kirchhoff space rods , 2016 .

[85]  Alessandro Della Corte,et al.  Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof , 2015 .

[86]  Alfio Grillo,et al.  Elasticity and permeability of porous fibre-reinforced materials under large deformations , 2012 .

[87]  H. P. Lee,et al.  Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects , 2005 .

[88]  Francesco dell’Isola,et al.  A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics , 2015 .

[89]  Victor A. Eremeyev,et al.  On the shell theory on the nanoscale with surface stresses , 2011 .

[90]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[91]  M. Pulvirenti,et al.  Macroscopic Description of Microscopically Strongly Inhomogenous Systems: A Mathematical Basis for the Synthesis of Higher Gradients Metamaterials , 2015, 1504.08015.

[92]  Stefano Gabriele,et al.  Initial postbuckling behavior of thin-walled frames under mode interaction , 2013 .

[93]  Nicola Luigi Rizzi,et al.  Heterogeneous elastic solids: a mixed homogenization-rigidification technique , 2001 .

[94]  Ugo Andreaus,et al.  Dynamics of SDOF Oscillators with Hysteretic Motion-Limiting Stop , 2000 .

[95]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[96]  Francesco dell’Isola,et al.  Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode , 2010 .

[97]  Luca Placidi,et al.  Experimental analysis and modeling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading , 2015 .

[98]  A.P.S. Selvadurai,et al.  Torsion of a layered composite strip , 2013 .

[99]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[100]  Noël Challamel,et al.  Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams , 2015 .

[101]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[102]  W. Pietraszkiewicz,et al.  Local Symmetry Group in the General Theory of Elastic Shells , 2006 .

[103]  Ivan Giorgio,et al.  Pantographic 2D sheets: Discussion of some numerical investigations and potential applications , 2016 .

[104]  Samuel Forest,et al.  Nonlinear microstrain theories , 2006 .

[105]  H. Altenbach,et al.  On the linear theory of micropolar plates , 2009 .

[106]  Giuseppe Rosi,et al.  Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces , 2015 .

[107]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[108]  Emilio Turco,et al.  Is the statistical approach suitable for identifying actions on structures , 2005 .

[109]  Emilio Turco,et al.  Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements , 2000 .

[110]  Luisa Pagnini,et al.  A numerical algorithm for the aerodynamic identification of structures , 1997 .

[111]  Tomasz Lekszycki,et al.  A 2‐D continuum model of a mixture of bone tissue and bio‐resorbable material for simulating mass density redistribution under load slowly variable in time , 2014 .

[112]  Dionisio Del Vescovo,et al.  Dynamic problems for metamaterials: Review of existing models and ideas for further research , 2014 .

[113]  F. dell’Isola,et al.  Non-linear second gradient continuum models for planar extensible beams and pantographic lattices of beams: Heuristic homogenization, experimental and numerical examples of equilibrium in large deformation , 2016 .

[114]  Tomasz Lekszycki,et al.  Problems of identification of mechanical characteristics of viscoelastic composites , 1998 .

[115]  Francesco dell’Isola,et al.  Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence , 2015 .

[116]  Antonio Cazzani,et al.  Numerical aspects of coupling strongly frequency-dependent soil–foundation models with structural finite elements in the time-domain , 2012 .

[117]  Francesco dell’Isola,et al.  Elastic pantographic 2 D lattices : a numerical analysis on the static response and wave propagation , 2015 .

[118]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .