Understanding force-generating microtubule systems through in vitro reconstitution

ABSTRACT Microtubules switch between growing and shrinking states, a feature known as dynamic instability. The biochemical parameters underlying dynamic instability are modulated by a wide variety of microtubule-associated proteins that enable the strict control of microtubule dynamics in cells. The forces generated by controlled growth and shrinkage of microtubules drive a large range of processes, including organelle positioning, mitotic spindle assembly, and chromosome segregation. In the past decade, our understanding of microtubule dynamics and microtubule force generation has progressed significantly. Here, we review the microtubule-intrinsic process of dynamic instability, the effect of external factors on this process, and how the resulting forces act on various biological systems. Recently, reconstitution-based approaches have strongly benefited from extensive biochemical and biophysical characterization of individual components that are involved in regulating or transmitting microtubule-driven forces. We will focus on the current state of reconstituting increasingly complex biological systems and provide new directions for future developments.

[1]  R. Vale,et al.  Mitochondrial positioning in fission yeast is driven by association with dynamic microtubules and mitotic spindle poles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Cheung,et al.  Fission yeast mitochondria are distributed by dynamic microtubules in a motor-independent manner , 2015, Scientific Reports.

[3]  J. Howard,et al.  Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[4]  E. Nogales,et al.  Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins , 2015, Cell.

[5]  P. Gönczy,et al.  Coupling of cortical dynein and Gα proteins mediates spindle positioning in Caenorhabditis elegans , 2007, Nature Cell Biology.

[6]  Anthony A. Hyman,et al.  Growth, fluctuation and switching at microtubule plus ends , 2009, Nature Reviews Molecular Cell Biology.

[7]  I. Kaverina,et al.  Nucleation and Dynamics of Golgi-derived Microtubules , 2015, Front. Neurosci..

[8]  A. Hyman,et al.  Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels , 2013, Nature Cell Biology.

[9]  D. Agard,et al.  Microtubule nucleation by γ-tubulin complexes , 2011, Nature Reviews Molecular Cell Biology.

[10]  J. Chilton,et al.  Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends , 2006, The Journal of cell biology.

[11]  Niels Galjart,et al.  Plus-End-Tracking Proteins and Their Interactions at Microtubule Ends , 2010, Current Biology.

[12]  M. Caplow,et al.  Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. , 1996, Molecular biology of the cell.

[13]  G. Koenderink,et al.  Cytoskeletal crosstalk: when three different personalities team up. , 2015, Current opinion in cell biology.

[14]  Jonathon Howard,et al.  The Distribution of Active Force Generators Controls Mitotic Spindle Position , 2003, Science.

[15]  R. Medema,et al.  Mechanisms of centrosome separation and bipolar spindle assembly. , 2010, Developmental cell.

[16]  Marileen Dogterom,et al.  Force generation by dynamic microtubules. , 2005, Current opinion in cell biology.

[17]  B. Oakley An abundance of tubulins. , 2000, Trends in cell biology.

[18]  J. Hegemann,et al.  Mal3, the Fission Yeast Homologue of the Human APC-interacting Protein EB-1 Is Required for Microtubule Integrity and the Maintenance of Cell Form , 1997, Journal of Cell Biology.

[19]  M. Kirschner,et al.  Polewards chromosome movement driven by microtubule depolymerization in vitro , 1988, Nature.

[20]  Carsten Janke,et al.  The tubulin code: Molecular components, readout mechanisms, and functions , 2014, The Journal of cell biology.

[21]  Dylan T Burnette,et al.  Mutations of Tubulin Glycylation Sites Reveal Cross-talk between the C Termini of α- and β-Tubulin and Affect the Ciliary Matrix in Tetrahymena* , 2005, Journal of Biological Chemistry.

[22]  D. Compton,et al.  Cyclin A Regulates Kinetochore-Microtubules to Promote Faithful Chromosome Segregation , 2013, Nature.

[23]  P. Nurse,et al.  CLIP170-like tip1p Spatially Organizes Microtubular Dynamics in Fission Yeast , 2000, Cell.

[24]  S. Leibler,et al.  Assembly and positioning of microtubule asters in microfabricated chambers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Cooper,et al.  Coordinating mitosis with cell polarity: Molecular motors at the cell cortex. , 2010, Seminars in cell & developmental biology.

[26]  Marcel Knossow,et al.  The determinants that govern microtubule assembly from the atomic structure of GTP-tubulin. , 2011, Journal of molecular biology.

[27]  V. Doye,et al.  Microtubule-dependent nuclear positioning and nuclear-dependent septum positioning in the fission yeast Saccharomyces pombe , 2000 .

[28]  T. Rapoport,et al.  Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts , 2013, The Journal of cell biology.

[29]  Jonathon Howard,et al.  Regulation of Microtubule Growth and Catastrophe: Unifying Theory and Experiment. , 2015, Trends in cell biology.

[30]  M. Carlier,et al.  Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. , 1987, Biochemistry.

[31]  Nigel J. Burroughs,et al.  Probing microtubule polymerisation state at single kinetochores during metaphase chromosome motion , 2015, Journal of Cell Science.

[32]  Anatoly V. Zaytsev,et al.  Long tethers provide high-force coupling of the Dam1 ring to shortening microtubules , 2013, Proceedings of the National Academy of Sciences.

[33]  Stefan Westermann,et al.  The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends , 2006, Nature.

[34]  Gary G. Borisy,et al.  Mammalian end binding proteins control persistent microtubule growth , 2009, The Journal of cell biology.

[35]  Hideo Tashiro,et al.  Flexural rigidity of individual microtubules measured by a buckling force with optical traps. , 2006, Biophysical journal.

[36]  A. Desai,et al.  The Conserved KMN Network Constitutes the Core Microtubule-Binding Site of the Kinetochore , 2006, Cell.

[37]  P. Nurse,et al.  How Fission Yeast Fission in the Middle , 1996, Cell.

[38]  A. Desai,et al.  Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells , 1998, Current Biology.

[39]  C. Bardin,et al.  erythro-9-[3-(2-Hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxylmethylase activities. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Liedewij Laan,et al.  Reconstitution of a microtubule plus-end tracking system in vitro , 2007, Nature.

[41]  Nicolas Minc,et al.  Influence of Cell Geometry on Division-Plane Positioning , 2011, Cell.

[42]  A. Hyman,et al.  Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Leibler,et al.  Self-organization of microtubules and motors , 1997, Nature.

[44]  D. Compton,et al.  A functional relationship between NuMA and kid is involved in both spindle organization and chromosome alignment in vertebrate cells. , 2003, Molecular biology of the cell.

[45]  H. Barra,et al.  Release of tyrosine from tyrosinated tubulin. Some common factors that affect this process and the assembly of tubulin , 1977, FEBS letters.

[46]  Gary J. Brouhard,et al.  XMAP215 Is a Processive Microtubule Polymerase , 2008, Cell.

[47]  Stefan Westermann,et al.  The Dam1 complex confers microtubule plus end–tracking activity to the Ndc80 kinetochore complex , 2010, The Journal of cell biology.

[48]  M. Cosentino Lagomarsino,et al.  Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach. , 2007, Biophysical journal.

[49]  Jacek Gaertig,et al.  The Tubulin Code , 2007, Cell cycle.

[50]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[51]  Kurt Wüthrich,et al.  An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal , 2009, Cell.

[52]  Trisha N Davis,et al.  The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[53]  B. Yurke,et al.  Measurement of the force-velocity relation for growing microtubules. , 1997, Science.

[54]  T. Davis,et al.  The Ndc80 kinetochore complex directly modulates microtubule dynamics , 2012, Proceedings of the National Academy of Sciences.

[55]  H M Buettner,et al.  Kinetics of microtubule catastrophe assessed by probabilistic analysis. , 1995, Biophysical journal.

[56]  C. Tischer,et al.  Force- and kinesin-8-dependent effects in the spatial regulation of fission yeast microtubule dynamics , 2009, Molecular systems biology.

[57]  H. Ahmadzadeh,et al.  Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes , 2016, Science.

[58]  N. Galjart,et al.  Role of CLASP2 in Microtubule Stabilization and the Regulation of Persistent Motility , 2006, Current Biology.

[59]  Tobias A. Knoch,et al.  Dynamic behavior of GFP–CLIP-170 reveals fast protein turnover on microtubule plus ends , 2008, The Journal of cell biology.

[60]  Liedewij Laan,et al.  End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers , 2012, Cell cycle.

[61]  T. Kapoor,et al.  Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage , 2022 .

[62]  K. Slep Structural and mechanistic insights into microtubule end-binding proteins. , 2010, Current opinion in cell biology.

[63]  Melissa K. Gardner,et al.  Depolymerizing Kinesins Kip3 and MCAK Shape Cellular Microtubule Architecture by Differential Control of Catastrophe , 2011, Cell.

[64]  R. Nicklas,et al.  The forces that move chromosomes in mitosis. , 1988, Annual review of biophysics and biophysical chemistry.

[65]  W. Cande Inhibition of spindle elongation in permeabilized mitotic cells by erythro-9-[3-(2-hydroxynonyl)] adenine , 1982, Nature.

[66]  H. Joshi,et al.  Differential utilization of beta-tubulin isotypes in differentiating neurites , 1989, The Journal of cell biology.

[67]  S. Leibler,et al.  Control of microtubule dynamics and length by cyclin A- and cyclin B- dependent kinases in Xenopus egg extracts , 1992, The Journal of cell biology.

[68]  David Pellman,et al.  Microtubule “Plus-End-Tracking Proteins” The End Is Just the Beginning , 2001, Cell.

[69]  T. Mitchison,et al.  Microtubule polymerization dynamics. , 1997, Annual review of cell and developmental biology.

[70]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.

[71]  R. Aebersold,et al.  Insights into EB1 structure and the role of its C-terminal domain for discriminating microtubule tips from the lattice , 2011, Molecular biology of the cell.

[72]  Tamir Gonen,et al.  Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis , 2007, Nature Cell Biology.

[73]  E. Mandelkow,et al.  Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study , 1991, The Journal of cell biology.

[74]  Liedewij Laan,et al.  Assembly dynamics of microtubules at molecular resolution , 2006, Nature.

[75]  E. Nogales Structural insights into microtubule function. , 2000, Annual review of biochemistry.

[76]  E. Stelzer,et al.  Dynein‐mediated pulling forces drive rapid mitotic spindle elongation in Ustilago maydis , 2006, The EMBO journal.

[77]  F. Perez,et al.  CLIP-170 Highlights Growing Microtubule Ends In Vivo , 1999, Cell.

[78]  T. Kapoor,et al.  Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore , 2012, Nature Reviews Molecular Cell Biology.

[79]  Francesco S. Pavone,et al.  Nuclear and Division-Plane Positioning Revealed by Optical Micromanipulation , 2005, Current Biology.

[80]  Marileen Dogterom,et al.  Optical trap setup for measuring microtubule pushing forces , 2003 .

[81]  Dawen Cai,et al.  Tubulin modifications and their cellular functions. , 2008, Current opinion in cell biology.

[82]  Gergő Bohner,et al.  EB1 Accelerates Two Conformational Transitions Important for Microtubule Maturation and Dynamics , 2014, Current Biology.

[83]  Tim Stearns,et al.  Microtubules Orient the Mitotic Spindle in Yeast through Dynein-dependent Interactions with the Cell Cortex , 1997, The Journal of cell biology.

[84]  R. Vallee,et al.  Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization , 2001, Current Biology.

[85]  L. Rice,et al.  JCB_201407095 1..12 , 2014 .

[86]  Timothy J. Mitchison,et al.  Kin I Kinesins Are Microtubule-Destabilizing Enzymes , 1999, Cell.

[87]  M. Wagenbach,et al.  Motor-dependent microtubule disassembly driven by tubulin tyrosination , 2009, The Journal of cell biology.

[88]  A. van Dorsselaer,et al.  Polyglutamylation Is a Post-translational Modification with a Broad Range of Substrates* , 2008, Journal of Biological Chemistry.

[89]  Frank Jülicher,et al.  Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters , 2012, Cell.

[90]  M. Balasubramanian,et al.  Astral microtubules monitor metaphase spindle alignment in fission yeast , 2002, Nature Cell Biology.

[91]  E. Nogales,et al.  The Ndc80 kinetochore complex forms oligomeric arrays along microtubules , 2010, Nature.

[92]  E. Salmon,et al.  Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts , 1995, The Journal of cell biology.

[93]  L. Rice,et al.  A TOG:αβ-tubulin Complex Structure Reveals Conformation-Based Mechanisms for a Microtubule Polymerase , 2012, Science.

[94]  M. Fisher,et al.  Force-velocity relation for growing microtubules. , 2001, Biophysical journal.

[95]  J. McIntosh,et al.  The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion , 2008, Proceedings of the National Academy of Sciences.

[96]  M. Dogterom,et al.  Reconstitution of Basic Mitotic Spindles in Spherical Emulsion Droplets. , 2016, Journal of visualized experiments : JoVE.

[97]  R. Vale,et al.  Regulation of microtubule motors by tubulin isotypes and posttranslational modifications , 2014, Nature Cell Biology.

[98]  I. Cheeseman,et al.  Cortical Dynein and Asymmetric Membrane Elongation Coordinately Position the Spindle in Anaphase , 2013, Cell.

[99]  Liedewij Laan,et al.  Reconstitution of cortical Dynein function. , 2014, Methods in enzymology.

[100]  K. Kaibuchi,et al.  Structural basis for tubulin recognition by cytoplasmic linker protein 170 and its autoinhibition , 2007, Proceedings of the National Academy of Sciences.

[101]  V. Doye,et al.  A Mechanism for Nuclear Positioning in Fission Yeast Based on Microtubule Pushing , 2001, The Journal of cell biology.

[102]  Owen S. Graham,et al.  Growing Microtubules Push the Oocyte Nucleus to Polarize the Drosophila Dorsal-Ventral Axis , 2012, Science.

[103]  J. Scholey,et al.  Anaphase B spindle dynamics in Drosophila S2 cells: Comparison with embryo spindles , 2011, Cell Division.

[104]  T. Mitchison,et al.  Growth, interaction, and positioning of microtubule asters in extremely large vertebrate embryo cells , 2012, Cytoskeleton.

[105]  F. Chang,et al.  Regulation of microtubule dynamics by TOG-domain proteins XMAP215/Dis1 and CLASP. , 2011, Trends in cell biology.

[106]  Y. Hiraoka,et al.  Dynamic behavior of microtubules during dynein-dependent nuclear migrations of meiotic prophase in fission yeast. , 2001, Molecular biology of the cell.

[107]  G. Borisy,et al.  Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis , 1996, The Journal of cell biology.

[108]  E. Salmon,et al.  Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate , 1991, The Journal of cell biology.

[109]  D. Mastronarde,et al.  Organization of interphase microtubules in fission yeast analyzed by electron tomography. , 2007, Developmental cell.

[110]  C. Hoogenraad,et al.  STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER , 2008, Current Biology.

[111]  Niels Galjart,et al.  CLIPs and CLASPs and cellular dynamics , 2005, Nature Reviews Molecular Cell Biology.

[112]  A. Mogilner,et al.  Quantitative analysis of an anaphase B switch: predicted role for a microtubule catastrophe gradient , 2007, The Journal of cell biology.

[113]  S. Diez,et al.  Diffusible Crosslinkers Generate Directed Forces in Microtubule Networks , 2015, Cell.

[114]  C. Sung,et al.  MTOC translocation modulates IS formation and controls sustained T cell signaling , 2008, The Journal of cell biology.

[115]  R. Vallee,et al.  A role for cytoplasmic dynein and LIS1 in directed cell movement , 2003, The Journal of cell biology.

[116]  D. Baker,et al.  High-Resolution Microtubule Structures Reveal the Structural Transitions in αβ-Tubulin upon GTP Hydrolysis , 2014, Cell.

[117]  M. Bathe,et al.  The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. , 2012, Developmental cell.

[118]  V. Doye,et al.  Microtubule-dependent nuclear positioning and nuclear-dependent septum positioning in the fission yeast Schizosaccharomyces [correction of Saccharomyces] pombe. , 2000, The Biological Bulletin.

[119]  Jonathon Howard,et al.  Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. , 2010, Methods in cell biology.

[120]  Q. Du,et al.  Cell cycle–regulated membrane binding of NuMA contributes to efficient anaphase chromosome separation , 2014, Molecular biology of the cell.

[121]  E. Nogales,et al.  High-Resolution Model of the Microtubule , 1999, Cell.

[122]  F. Nédélec,et al.  Crosslinkers and Motors Organize Dynamic Microtubules to Form Stable Bipolar Arrays in Fission Yeast , 2007, Cell.

[123]  Hong Zhang,et al.  Microtubule Dynamics Control Tail Retraction in Migrating Vascular Endothelial Cells , 2013, Molecular Cancer Therapeutics.

[124]  N. Galjart,et al.  EB1 and EB3 control CLIP dissociation from the ends of growing microtubules. , 2005, Molecular biology of the cell.

[125]  Andrew D. Franck,et al.  The Ndc80 Kinetochore Complex Forms Load-Bearing Attachments to Dynamic Microtubule Tips via Biased Diffusion , 2009, Cell.

[126]  V. Voevodin,et al.  Molecular and Mechanical Causes of Microtubule Catastrophe and Aging. , 2015, Biophysical journal.

[127]  M. Kirschner,et al.  Microtubule assembly nucleated by isolated centrosomes , 1984, Nature.

[128]  H. Higgs,et al.  Review Connecting the Cytoskeleton to the Endoplasmic Reticulum and Golgi , 2022 .

[129]  Carsten Janke,et al.  Microtubule detyrosination guides chromosomes during mitosis , 2015, Science.

[130]  I. Maly,et al.  Symmetry, stability, and reversibility properties of idealized confined microtubule cytoskeletons. , 2010, Biophysical journal.

[131]  Gergő Bohner,et al.  EBs Recognize a Nucleotide-Dependent Structural Cap at Growing Microtubule Ends , 2012, Cell.

[132]  T. G. Setty,et al.  Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast. , 2005, Molecular biology of the cell.

[133]  Cătălin Tănase,et al.  On the stall force for growing microtubules , 2000, European Biophysics Journal.

[134]  D. Odde,et al.  Microtubule Assembly Dynamics at the Nanoscale , 2007, Current Biology.

[135]  J. Howard,et al.  Elastic and damping forces generated by confined arrays of dynamic microtubules , 2006, Physical biology.

[136]  R. Liem,et al.  Microtubule Actin Cross-Linking Factor (Macf) , 1999, The Journal of cell biology.

[137]  T. Surrey,et al.  The size of the EB cap determines instantaneous microtubule stability , 2016, eLife.

[138]  J. Husson,et al.  Force-generation and dynamic instability of microtubule bundles , 2008, Proceedings of the National Academy of Sciences.

[139]  H Tashiro,et al.  Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. , 1995, Cell motility and the cytoskeleton.

[140]  V. Allan,et al.  Dynactin , 2000, Current Biology.

[141]  B. Slepchenko,et al.  Centrosome positioning in interphase cells , 2003, The Journal of cell biology.

[142]  Antoine M. van Oijen,et al.  CLASP promotes microtubule rescue by recruiting tubulin dimers to the microtubule. , 2010, Developmental cell.

[143]  J. McIntosh,et al.  Force production by disassembling microtubules , 2005, Nature.

[144]  Franck Perez,et al.  Detection of GTP-Tubulin Conformation in Vivo Reveals a Role for GTP Remnants in Microtubule Rescues , 2008, Science.

[145]  Andrew D. Franck,et al.  Cooperation of the Dam1 and Ndc80 kinetochore complexes enhances microtubule coupling and is regulated by aurora B , 2010, The Journal of cell biology.

[146]  A. Hoenger,et al.  GTPγS microtubules mimic the growing microtubule end structure recognized by end-binding proteins (EBs) , 2011, Proceedings of the National Academy of Sciences.

[147]  M. Kupiec,et al.  Midzone organization restricts interpolar microtubule plus‐end dynamics during spindle elongation , 2009, EMBO reports.

[148]  Tamir Gonen,et al.  Tension directly stabilizes reconstituted kinetochore-microtubule attachments , 2010, Nature.

[149]  C. Rieder,et al.  Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers , 1991, The Journal of cell biology.

[150]  Leonardo Sacconi,et al.  Positioning and Elongation of the Fission Yeast Spindle by Microtubule-Based Pushing , 2004, Current Biology.

[151]  F. Jülicher,et al.  Positioning of microtubule organizing centers by cortical pushing and pulling forces , 2012 .

[152]  Shannon F. Stewman,et al.  Drosophila katanin is a microtubule depolymerase that regulates cortical-microtubule plus-end interactions and cell migration , 2011, Nature Cell Biology.

[153]  A. Mogilner,et al.  A force balance model of early spindle pole separation in Drosophila embryos. , 2003, Biophysical journal.

[154]  Anthony A. Hyman,et al.  Structural changes at microtubule ends accompanying GTP hydrolysis: Information from a slowly hydrolyzable analogue of GTP, guanylyl (α,β)methylenediphosphonate , 1998 .

[155]  A. Hyman,et al.  Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. , 1992, Molecular biology of the cell.

[156]  D. Odde,et al.  Dynein Tethers and Stabilizes Dynamic Microtubule Plus Ends , 2012, Current Biology.

[157]  E. Salmon,et al.  Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies , 1988, The Journal of cell biology.

[158]  Svenja-Marei Kalisch,et al.  Force generation by dynamic microtubules in vitro. , 2011, Methods in molecular biology.

[159]  J. Yates,et al.  The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. , 2009, Developmental cell.

[160]  E. Nogales,et al.  Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms , 2007, Nature Structural &Molecular Biology.

[161]  D. Odde,et al.  Estimating the Microtubule GTP Cap Size In Vivo , 2012, Current Biology.

[162]  E. Salmon,et al.  Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms , 1998, Current Biology.

[163]  R. Daga,et al.  Asymmetric Microtubule Pushing Forces in Nuclear Centering , 2006, Current Biology.

[164]  C. Faivre-Moskalenko,et al.  Dynamics of microtubule asters in microfabricated chambers: The role of catastrophes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[165]  Marileen Dogterom,et al.  Dynamic instability of microtubules is regulated by force , 2003, The Journal of cell biology.

[166]  J. Howard,et al.  Microtubule catastrophe and rescue. , 2013, Current opinion in cell biology.

[167]  Pierre Gönczy,et al.  Mechanisms of spindle positioning: cortical force generators in the limelight. , 2013, Current opinion in cell biology.

[168]  R. Luduena,et al.  Beta IV is the major beta-tubulin isotype in bovine cilia. , 1993, Cell motility and the cytoskeleton.