A Decidable Characterization of a Graphical Pi-calculus with Iterators

This paper presents the Pi-graphs, a visual paradigm for the modelling and verification of mobile systems. The language is a graphical variant of the Pi-calculus with iterators to express non-terminating behaviors. The operational semantics of Pi-graphs use ground notions of labelled transition and bisimulation, which means standard verification techniques can be applied. We show that bisimilarity is decidable for the proposed semantics, a result obtained thanks to an original notion of causal clock as well as the automatic garbage collection of unused names.

[1]  Frédéric Peschanski,et al.  Modelling and Verifying Mobile Systems Using pi-Graphs , 2009, SOFSEM.

[2]  Marco Pistore,et al.  A Partition Refinement Algorithm for the -Calculus , 2001, Inf. Comput..

[3]  Joachim Parrow Interaction Diagrams , 1995, Nord. J. Comput..

[4]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[5]  Maurizio Gabbrielli,et al.  Comparing Recursion, Replication, and Iteration in Process Calculi , 2004, ICALP.

[6]  Rocco De Nicola,et al.  A Symbolic Semantics for the pi-Calculus , 1996, Inf. Comput..

[7]  Corrado Priami,et al.  Causality for Mobile Processes , 1995, ICALP.

[8]  Marco Pistore,et al.  Checking Bisimilarity for Finitary pi-Calculus , 1995, CONCUR.

[9]  Marco Pistore,et al.  History-Dependent Automata: An Introduction , 2005, SFM.

[10]  Fabio Gadducci Graph rewriting for the pi-calculus , 2007, Math. Struct. Comput. Sci..

[11]  Maciej Koutny,et al.  A compositional Petri net translation of general π-calculus terms , 2008, Formal Aspects of Computing.

[12]  Marco Pistore,et al.  Verifying Mobile Processes in the HAL Environment , 1998, CAV.

[13]  Yves Métivier,et al.  Graph relabelling systems and distributed algorithms , 1999 .

[14]  Fabio Gadducci,et al.  Synthesising CCS bisimulation using graph rewriting , 2009, Inf. Comput..

[15]  Faron Moller,et al.  The Mobility Workbench - A Tool for the pi-Calculus , 1994, CAV.

[16]  Robin Milner Pi-Nets: A Graphical Form of pi-Calculus , 1994, ESOP.

[17]  Roberto Gorrieri,et al.  On the Relationship between π-Calculus and Finite Place/Transition Petri Nets , 2009, CONCUR.

[18]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[19]  Hartmut Ehrig,et al.  Handbook of graph grammars and computing by graph transformation: vol. 3: concurrency, parallelism, and distribution , 1999 .