Feasibility of the Exact Geometric Computation Paradigm for Largest Empty Anchored Cylinder Computation in the Plane
暂无分享,去创建一个
[1] Kurt Mehlhorn,et al. Efficient exact geometric computation made easy , 1999, SCG '99.
[2] Joseph O'Rourke,et al. Handbook of Discrete and Computational Geometry, Second Edition , 1997 .
[3] Michiel H. M. Smid,et al. Computing a Largest Empty Anchored Cylinder, and Related Problems , 1997, Int. J. Comput. Geom. Appl..
[4] Leonidas J. Guibas,et al. Combinatorics and Algorithms of Arrangements , 1993 .
[5] Kurt Mehlhorn,et al. A Separation Bound for Real Algebraic Expressions , 2001, Algorithmica.
[6] Sylvain Pion,et al. Constructive root bound for k-ary rational input numbers , 2006, Theor. Comput. Sci..
[7] Chee-Keng Yap,et al. A core library for robust numeric and geometric computation , 1999, SCG '99.
[8] Chee-Keng Yap,et al. Towards Exact Geometric Computation , 1997, Comput. Geom..
[9] Michiel H. M. Smid,et al. Computing a Largest Empty Anchored Cylinder, and Related Problems , 1995, FSTTCS.
[10] Kurt Mehlhorn,et al. LEDA: a platform for combinatorial and geometric computing , 1997, CACM.
[11] Stefan Schirra,et al. Robustness and Precision Issues in Geometric Computation , 2000, Handbook of Computational Geometry.
[12] Kurt Mehlhorn,et al. Exact geometric computation made easy , 1999 .