Sobolev Spaces with Zero Boundary Values on Metric Spaces

We generalize the definition of the first order Sobolev spaces with zero boundary values to an arbitrary metric space endowed with a Borel regular measure. We show that many classical results extend to the metric setting. These include completeness, lattice properties and removable sets.

[1]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[2]  J. Heinonen,et al.  Quasiconformal maps in metric spaces with controlled geometry , 1998 .

[3]  L. Hedberg,et al.  Approximation in the mean by analytic functions , 1972 .

[4]  Nicola Garofalo,et al.  ISOPERIMETRIC AND SOBOLEV INEQUALITIES FOR CARNOT-CARATHEODORY SPACES AND THE EXISTENCE OF MINIMAL SURFACES , 1996 .

[5]  Richard L. Wheeden,et al.  Weighted Sobolev-Poincaré inequalities for Grushin type operators , 1994 .

[6]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[7]  A. Kałamajska ON COMPACTNESS OF EMBEDDING FOR SOBOLEV SPACES DEFINED ON METRIC SPACES , 1999 .

[8]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[9]  R. Wheeden,et al.  A relationship between Poincaré-type inequalities and representation formulas in spaces of homogeneous type , 1996 .

[10]  L. Capogna,et al.  Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations , 1996 .

[11]  Pekka Koskela,et al.  Sobolev met Poincaré , 2000 .

[12]  I. Holopainen,et al.  A strong Liouville theorem for $p$-harmonic functions on graphs , 1997 .

[13]  Luca Capogna,et al.  An embedding theorem and the harnack inequality for nonlinear subelliptic equations , 1993 .

[14]  Ronald R. Coifman,et al.  Analyse Hamonique Non-Commutative sur Certains Espaces Homogenes , 1971 .

[15]  Piotr Hajłasz,et al.  @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .

[16]  P. Koskela,et al.  Sobolev meets Poincaré , 1995 .

[17]  O. Martio,et al.  Traces of Sobolev Functions on Fractal Type Sets and Characterization of Extension Domains , 1997 .

[18]  J. Kinnunen,et al.  Hölder quasicontinuity of Sobolev functions on metric spaces , 1998 .

[19]  S. K. Vodop’yanov Monotone functions and quasiconformal mappings on Carnot groups , 1996 .

[20]  T. Bagby,et al.  Quasi topologies and rational approximation , 1972 .

[21]  J. Deny,et al.  Les espaces du type de Beppo Levi , 1954 .

[22]  Juha Kinnunen,et al.  THE SOBOLEV CAPACITY ON METRIC SPACES , 1996 .

[23]  T. Kilpeläinen A REMARK ON THE UNIQUENESS OF QUASI CONTINUOUS FUNCTIONS , 1998 .