Deformed Kernel Based Extreme Learning Machine

The extreme learning machine (ELM) is a newly emerging supervised learning method. In order to use the information provided by unlabeled samples and improve the performance of the ELM, we deformed the kernel in the ELM by modeling the marginal distribution with the graph Laplacian, which is built with both labeled and unlabeled samples. We further approximated the deformed kernel by means of random feature mapping. The experimental results showed that the proposed semi-supervised extreme learning machine tends to achieve outstanding generalization performance at a relatively faster learning speed than traditional semi-supervised learning algorithms.

[1]  S. Sathiya Keerthi,et al.  Large scale semi-supervised linear SVMs , 2006, SIGIR.

[2]  Dale Schuurmans,et al.  Maximum Margin Clustering , 2004, NIPS.

[3]  Yilin He,et al.  Multi-Layer Kernel Learning Method Faced on Roller Bearing Fault Diagnosis , 2012, J. Softw..

[4]  Chee Kheong Siew,et al.  Universal Approximation using Incremental Constructive Feedforward Networks with Random Hidden Nodes , 2006, IEEE Transactions on Neural Networks.

[5]  Jason Weston,et al.  Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..

[6]  Dianhui Wang,et al.  Extreme learning machines: a survey , 2011, Int. J. Mach. Learn. Cybern..

[7]  Alexander Zien,et al.  A continuation method for semi-supervised SVMs , 2006, ICML.

[8]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[9]  Guang-Bin Huang,et al.  Extreme learning machine: a new learning scheme of feedforward neural networks , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[10]  Alexander Zien,et al.  Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.

[11]  Ayhan Demiriz,et al.  Semi-Supervised Support Vector Machines , 1998, NIPS.

[12]  Qiang Yang,et al.  Discriminatively regularized least-squares classification , 2009, Pattern Recognit..

[13]  Lei Chen,et al.  Enhanced random search based incremental extreme learning machine , 2008, Neurocomputing.

[14]  Xiao-Hong Nian,et al.  A Novel MC-DTC Method For Induction Motor Based on Fuzzy-neural network Space Vector Modulation , 2012, J. Softw..

[15]  Bo Zhang,et al.  Sparse regularization for semi-supervised classification , 2011, Pattern Recognit..

[16]  Zenglin Xu,et al.  Efficient Convex Relaxation for Transductive Support Vector Machine , 2007, NIPS.

[17]  Min Han,et al.  Partial Lanczos extreme learning machine for single-output regression problems , 2009, Neurocomputing.

[18]  Benoît Frénay,et al.  Using SVMs with randomised feature spaces: an extreme learning approach , 2010, ESANN.

[19]  Fei Wang,et al.  Cuts3vm: a fast semi-supervised svm algorithm , 2008, KDD.

[20]  O. Mangasarian,et al.  Semi-Supervised Support Vector Machines for Unlabeled Data Classification , 2001 .

[21]  Jia Lv,et al.  Semi-supervised Learning Using Local Regularizer and Unit Circle Class Label Representation , 2012, J. Softw..

[22]  Qing He,et al.  Extreme Support Vector Machine Classifier , 2008, PAKDD.

[23]  S. Sathiya Keerthi,et al.  Deterministic annealing for semi-supervised kernel machines , 2006, ICML.

[24]  Qinghua Zheng,et al.  Regularized Extreme Learning Machine , 2009, 2009 IEEE Symposium on Computational Intelligence and Data Mining.

[25]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[26]  Hongming Zhou,et al.  Extreme Learning Machine for Regression and Multiclass Classification , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[27]  S. Sathiya Keerthi,et al.  Branch and Bound for Semi-Supervised Support Vector Machines , 2006, NIPS.

[28]  Chee Kheong Siew,et al.  Extreme learning machine: Theory and applications , 2006, Neurocomputing.

[29]  Annabella Astorino,et al.  Nonsmooth Optimization Techniques for Semisupervised Classification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Guang-Bin Huang,et al.  Convex incremental extreme learning machine , 2007, Neurocomputing.

[31]  Amaury Lendasse,et al.  OP-ELM: Optimally Pruned Extreme Learning Machine , 2010, IEEE Transactions on Neural Networks.

[32]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[33]  Geoffrey E. Hinton,et al.  Learning representations of back-propagation errors , 1986 .