Mathematical Renormalization in Quantum Electrodynamics via Noncommutative Generating Series

In this work, we focus on on the approach by noncommutative formal power series to study the combinatorial aspects of the renormalization at the singularities in $\{0,1,+\infty\}$ of the solutions of nonlinear differential equations involved in quantum electrodynamics.

[1]  David E. Radford,et al.  A natural ring basis for the shuffle algebra and an application to group schemes , 1979 .

[2]  Hoang Ngoc Minh Dirichlet functions of n order and t parameter (French) , 1998 .

[3]  Gérard Duchamp,et al.  Harmonic sums and polylogarithms at negative multi-indices , 2015, ACCA.

[4]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[5]  Hoang Ngoc Minh,et al.  Algorithmic and combinatoric aspects of multiple harmonic sums , 2005 .

[6]  Gérard Duchamp,et al.  An interface between physics and number theory , 2010, ArXiv.

[7]  C. Reutenauer The Local Realization of Generating Series of Finite Lie Rank , 1986 .

[8]  R. Ree,et al.  Lie Elements and an Algebra Associated With Shuffles , 1958 .

[9]  Jun Murakami,et al.  Kontsevich’s integral for the Kauffman polynomial , 1996, Nagoya Mathematical Journal.

[10]  Christophe Tollu,et al.  Sweedler's duals and Schützenberger's calculus , 2007, ArXiv.

[11]  Michel Petitot,et al.  Combinatorial aspects of polylogarithms and Euler-Zagier sums. (Aspects combinatoires des polylogarithmes et des sommes d'Euler-Zagier.) , 1999 .

[12]  Vincel Hoang Ngoc Minh,et al.  On a conjecture by Pierre Cartier about a group of associators , 2009, 0910.1932.

[13]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[14]  Jonathan M. Borwein,et al.  Special values of multiple polylogarithms , 1999, math/9910045.

[15]  Gérard Duchamp,et al.  Independence of Hyperlogarithms over Function Fields via Algebraic Combinatorics , 2011, CAI.

[16]  Michel Petitot,et al.  Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..

[17]  M. Fliess Vers une notion de dérivation fonctionnelle causale , 1986 .

[18]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[19]  Gérard Jacob,et al.  Symbolic integration of meromorphic differential systems via Dirichlet functions , 2000, Discret. Math..

[20]  J. F.,et al.  The Radiation Theories of Tomonaga , Schwinger , and Feynman , 2011 .

[21]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[22]  Christophe Reutenauer,et al.  Un critère de rationalité provenant de la géométrie non commutative , 1997 .

[23]  A. Pressley,et al.  A guide to quantum groups , 1994 .

[24]  Joris van der Hoeven,et al.  Shuffle algebra and polylogarithms , 2000, Discret. Math..

[25]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[26]  Christophe Tollu,et al.  (Pure) transcendence bases in $\phi$-deformed shuffle bialgebras , 2015, 1507.01089.

[27]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[28]  Gérard Viennot Factorisations des monoïdes libres et familles basiques des algèbres de lie libres , 1978 .

[29]  Vincel Hoang Ngoc Minh,et al.  Radford bases and Schützenberger's Factorizations , 2011 .

[30]  Hoang Ngoc Minh Summations of polylogarithms via evaluation transform , 1996 .

[31]  Gérard Duchamp,et al.  Schützenberger's factorization on q?stuffle Hopf algebra , 2014, ACCA.

[32]  Christophe Tollu,et al.  (Pure) transcendence bases in φ-deformed shuffle bialgebras , 2015, ArXiv.

[33]  Pierre Cartier,et al.  Développements récents sur les groupes de tresses. Applications à la topologie et à l'algèbre , 1997 .

[34]  R. Lyndon,et al.  Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .

[35]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[36]  Une étude des séries formelles non commutatives, pour l'approximation et l'identification des systèmes dynamiques , 1998 .

[37]  G. Hochschild,et al.  The Structure of Lie Groups. , 1967 .

[38]  Michael E. Hoffman,et al.  The Algebra of Multiple Harmonic Series , 1997 .

[39]  D. Foata,et al.  Theorie Geometrique des Polynomes Euleriens , 1970 .

[40]  M. Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives , 1983 .

[41]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[42]  Bernhard K. Meister,et al.  Quantum field theory of partitions , 1999 .

[43]  M. Petitot,et al.  DE L’ALGÈBRE DES ζ DE RIEMANN MULTIVARIÉES À L’ALGÈBRE DES ζ DE HURWITZ MULTIVARIÉES , 2001 .

[44]  G. Jacob,et al.  Input/Output behaviour of nonlinear analytic systems: Rational approximations, nilpotent structural approximations , 1991 .

[45]  Michael E. Hoffman,et al.  Multiple harmonic series. , 1992 .

[46]  Quoc Hoan Ngo,et al.  Harmonic sums and polylogarithms at non-positive multi-indices , 2016, J. Symb. Comput..