Carbon Materials in Lithium-ion Rechargeable Batteries

[1]  Mingming Chen,et al.  Carbon coating of Li4Ti5O12 using amphiphilic carbonaceous material for improvement of lithium-ion battery performance , 2012 .

[2]  Huaihe Song,et al.  Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries , 2012 .

[3]  Bin Wu,et al.  Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries , 2011 .

[4]  T. Fukutsuka,et al.  Electrochemical properties of graphite electrode in propylene carbonate-based electrolytes containing lithium and calcium ions , 2011 .

[5]  Ying Shi,et al.  Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries , 2011 .

[6]  Huaihe Song,et al.  Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries , 2011 .

[7]  H. A. Toprakci,et al.  Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries , 2011 .

[8]  Hun‐Gi Jung,et al.  Micron-sized, carbon-coated Li 4Ti 5O 12 as high power anode material for advanced lithium batteries , 2011 .

[9]  Haihui Wang,et al.  Sol–gel synthesis and electrochemical performance of Li4Ti5O12/graphene composite anode for lithium-ion batteries , 2011 .

[10]  D. Aurbach,et al.  A review of advanced and practical lithium battery materials , 2011 .

[11]  M. Doeff,et al.  Spherical Nanoporous LiCoPO4/C Composites as High Per-formance Cathode Materials for Rechargeable Lithium Bat-teries , 2011 .

[12]  Feiyu Kang,et al.  Effects of carbonaceous materials on the physical and electrochemical performance of a LiFePO4 cathode for lithium-ion batteries , 2011 .

[13]  M. Mitrić,et al.  Preparation of LiFePO 4/C composites by co-precipitation in molten stearic acid , 2011 .

[14]  Feihe Huang,et al.  Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries , 2011 .

[15]  Feng Wang,et al.  LiFexMn1―xPO4: A cathode for lithium-ion batteries , 2011 .

[16]  X. Lou,et al.  Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage , 2011 .

[17]  Yong‐Sheng Hu,et al.  Porous Li4Ti5O12 Coated with N‐Doped Carbon from Ionic Liquids for Li‐Ion Batteries , 2011, Advanced materials.

[18]  Wei-Jun Zhang Structure and performance of LiFePO 4 cathode materials: A review , 2011 .

[19]  Zongping Shao,et al.  Different effect of the atmospheres on the phase formation and performance of Li4Ti5O12 prepared from ball-milling- assisted solid-phase reaction with pristine and carbon-precoated TiO2 as starting materials , 2011 .

[20]  Hongmei Du,et al.  A novel sol–gel method based on FePO4·2H2O to synthesize submicrometer structured LiFePO4/C cathode material , 2011 .

[21]  H. Kao,et al.  A polyethylene glycol-assisted carbothermal reduction method to synthesize LiFePO4 using industrial raw materials , 2011 .

[22]  Xufeng Zhou,et al.  Graphene modified LiFePO4 cathode materials for high power lithium ion batteries , 2011 .

[23]  Chusheng Chen,et al.  A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)(3)/C cathodes for lithium-ion batteries , 2011 .

[24]  Hui Yang,et al.  Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol-gel method , 2011 .

[25]  Wei Lv,et al.  Flexible and planar graphene conductive additives for lithium-ion batteries , 2010 .

[26]  I. Cantero,et al.  Conductive additive content balance in Li-ion battery cathodes: Commercial carbon blacks vs. in situ carbon from LiFePO4/C composites , 2010 .

[27]  Ke Yang,et al.  Influence factors on electrochemical properties of Li4Ti5O12/C anode material pyrolyzed from lithium polyacrylate , 2010 .

[28]  Tingfeng Yi,et al.  Recent development and application of Li4Ti5O12 as anode material of lithium ion battery , 2010 .

[29]  H. Fujimoto Development of efficient carbon anode material for a high-power and long-life lithium ion battery , 2010 .

[30]  T. Abe,et al.  Development and degradation of graphitic microtexture in carbon nanospheres under a morphologically restrained condition , 2010 .

[31]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[32]  Huaihe Song,et al.  Synthesis and high-rate capability of quadrangular carbon nanotubes with one open end as anode materials for lithium-ion batteries , 2010 .

[33]  Jeffrey W. Fergus,et al.  Recent developments in cathode materials for lithium ion batteries , 2010 .

[34]  Michio Inagaki,et al.  Carbon-coated graphite for anode of lithium ion rechargeable batteries: Graphite substrates for carbon coating , 2009 .

[35]  A. Jaiswal,et al.  Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries , 2009 .

[36]  François Béguin,et al.  Carbons for Electrochemical Energy Storage and Conversion Systems , 2009 .

[37]  M. Inagaki,et al.  Production and advantages of carbon-coated graphite for the anode of lithium ion rechargeable batteries , 2009 .

[38]  M. Inagaki,et al.  Carbon-coated graphite for anode of lithium ion rechargeable batteries: Carbon coating conditions and precursors , 2009 .

[39]  Lijun Gao,et al.  Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery , 2009 .

[40]  Jenn‐Shing Chen,et al.  Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors , 2009 .

[41]  L. Zhi,et al.  Graphene-based electrode materials for rechargeable lithium batteries , 2009 .

[42]  B. Cheng,et al.  Oxidation Conversion of Carbon-Encapsulated Metal Nanoparticles to Hollow Nanoparticles , 2009 .

[43]  Huaihe Song,et al.  Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries , 2009 .

[44]  D. Uskoković,et al.  A review of recent developments in the synthesis procedures of lithium iron phosphate powders , 2009 .

[45]  Wantai Yang,et al.  Carbon-Encapsulated Metal Oxide Hollow Nanoparticles and Metal Oxide Hollow Nanoparticles: A General Synthesis Strategy and Its Application to Lithium-Ion Batteries , 2009 .

[46]  Zongping Shao,et al.  Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source , 2009 .

[47]  H. Kao,et al.  Study of LiFePO4 cathode materials coated with high surface area carbon , 2009 .

[48]  H. Kao,et al.  The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes , 2009 .

[49]  Arumugam Manthiram,et al.  One-Pot Microwave-Hydrothermal Synthesis and Characterization of Carbon-Coated LiMPO4 (M = Mn , Fe, and Co) Cathodes , 2009 .

[50]  Yong Jung Kim,et al.  The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries. , 2008, ChemSusChem.

[51]  Guangchuan Liang,et al.  Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution , 2008 .

[52]  H. Pan,et al.  Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C , 2008 .

[53]  Jou‐Hyeon Ahn,et al.  Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process , 2008 .

[54]  S. Ji,et al.  Influence of carbon sources on electrochemical performances of LiFePO4/C composites , 2008 .

[55]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[56]  H. Ahn,et al.  Electrochemical properties of LiFePO4/C composite cathode material: Carbon coating by the precursor method and direct addition , 2008 .

[57]  Chang Liu,et al.  Poly(vinyl chloride) (PVC) Coated Idea Revisited: Influence of Carbonization Procedures on PVC-Coated Natural Graphite as Anode Materials for Lithium Ion Batteries , 2008 .

[58]  N. Imanishi,et al.  Surface-modified meso-carbon microbeads anode for dry polymer lithium-ion batteries , 2008 .

[59]  M. Stanley Whittingham,et al.  Materials Challenges Facing Electrical Energy Storage , 2008 .

[60]  T. Abe,et al.  TEM observation of heterogeneous polyhedronization behavior in graphitized carbon nanospheres , 2008 .

[61]  T. Abe,et al.  Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: Electrolyte-concentration dependence of electrochemical lithium intercalation reaction , 2008 .

[62]  Tsutomu Ohzuku,et al.  An overview of positive-electrode materials for advanced lithium-ion batteries , 2007 .

[63]  G. Cui,et al.  A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries. , 2007, Small.

[64]  John R. Owen,et al.  High throughput screening of the effect of carbon coating in LiFePO4 electrodes , 2007 .

[65]  Yongyao Xia,et al.  Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation , 2007 .

[66]  Robert Dominko,et al.  Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4 , 2007 .

[67]  Ketack Kim,et al.  Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4 , 2007 .

[68]  Robert Kostecki,et al.  Optimization of Carbon Coatings on LiFePO4 , 2006 .

[69]  H. Jang,et al.  Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black , 2006 .

[70]  Chang Liu,et al.  Urchin-like nano/micro hybrid anode materials for lithium ion battery , 2006 .

[71]  M. Inagaki,et al.  Preparation of carbon-coated Sn powders and their loading onto graphite flakes for lithium ion secondary battery , 2006 .

[72]  Karim Zaghib,et al.  Reduction Fe3+ of Impurities in LiFePO4 from Pyrolysis of Organic Precursor Used for Carbon Deposition , 2006 .

[73]  Chang Liu,et al.  Electrochemical performance of pyrolytic carbon-coated natural graphite spheres , 2006 .

[74]  Marca M. Doeff,et al.  Carbon Surface Layers on a High-Rate LiFePO4 , 2006 .

[75]  C. Ong,et al.  Effect of Various Organic Precursors on the Performance of LiFePO4 ∕ C Composite Cathode by Coprecipitation Method , 2006 .

[76]  M. Tabuchi,et al.  Structural and Surface Modifications of LiFePO4 Olivine Particles and Their Electrochemical Properties , 2006 .

[77]  Jingsi Yang,et al.  Synthesis and Characterization of Carbon-Coated Lithium Transition Metal Phosphates LiMPO4 (M = Fe , Mn, Co, Ni) Prepared via a Nonaqueous Sol-Gel Route , 2006 .

[78]  Min Gyu Kim,et al.  Elimination of Extraneous Irreversible Capacity in Mesoporous Tin Phosphate Anode by Amorphous Carbon Coating , 2006 .

[79]  Guoxiu Wang,et al.  A new rapid synthesis technique for electrochemically active materials used in energy storage applications , 2006 .

[80]  J. Dicarlo,et al.  Characteristics of graphite anode modified by CVD carbon coating , 2006 .

[81]  T. Abe,et al.  Graphitized Carbon Nanobeads with an Onion Texture as a Lithium‐Ion Battery Negative Electrode for High‐Rate Use , 2005 .

[82]  Kang Xu,et al.  Optimization of reaction condition for solid-state synthesis of LiFePO4-C composite cathodes , 2005 .

[83]  Chusheng Chen,et al.  Pyrolytic polyurea encapsulated natural graphite as anode material for lithium ion batteries , 2005 .

[84]  T. Nakajima,et al.  Pyrocarbon-coating on powdery hard-carbon using chemical vapor infiltration and its electrochemical characteristics , 2005 .

[85]  J. Rouzaud,et al.  Correlation of the irreversible lithium capacity with the active surface area of modified carbons , 2005 .

[86]  T. Abe,et al.  Lithium-Ion Transfer at an Electrolyte/Heat-Treated Nongraphitizable Carbon Electrode Interface , 2005 .

[87]  J. Newman,et al.  Comparison of LiFePO4 from different sources , 2005 .

[88]  S. Pejovnik,et al.  Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4 / C Composites , 2005 .

[89]  Jingsi Yang,et al.  Nonaqueous Sol-Gel Synthesis of High-Performance LiFePO4 , 2004 .

[90]  Shinichi Komaba,et al.  Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material , 2004 .

[91]  A. Sastry,et al.  Particle Compression and Conductivity in Li-Ion Anodes with Graphite Additives , 2004 .

[92]  Takeshi Abe,et al.  Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte , 2004 .

[93]  M. Yoshio,et al.  Improvement of natural graphite as a lithium-ion battery anode material, from raw flake to carbon-coated sphere , 2004 .

[94]  Konstantin Konstantinov,et al.  Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source , 2004 .

[95]  T. Fukutsuka,et al.  Lithium-ion transfer at interface between carbonaceous thin film electrode/electrolyte , 2004 .

[96]  K. Zaghib,et al.  Effect of particle morphology on lithium intercalation rates in natural graphite , 2003, Journal of Power Sources.

[97]  Robert Kostecki,et al.  Effect of surface carbon structure on the electrochemical performance of LiFePO{sub 4} , 2003 .

[98]  M. Yoshio,et al.  Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. , 2003, Angewandte Chemie.

[99]  Y. Azuma,et al.  Synthesis of LiFePO4 cathode material by microwave processing , 2003 .

[100]  A. Yamada,et al.  Olivine-type cathodes: Achievements and problems , 2003 .

[101]  Jai-Young Lee,et al.  Improvement on the electrochemical characteristics of graphite anodes by coating of the pyrolytic carbon using tumbling chemical vapor deposition , 2003 .

[102]  J. Barker,et al.  Lithium Iron(II) Phospho-olivines Prepared by a Novel Carbothermal Reduction Method , 2003 .

[103]  Sylvain Franger,et al.  LiFePO4 Synthesis Routes for Enhanced Electrochemical Performance , 2002 .

[104]  J. Dahn,et al.  Reducing Carbon in LiFePO4 / C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density , 2002 .

[105]  Stefano Passerini,et al.  A New Synthetic Route for Preparing LiFePO4 with Enhanced Electrochemical Performance , 2002 .

[106]  M. Yoshio,et al.  Characterization of Carbon-Coated Natural Graphite as a Lithium-Ion Battery Anode Material , 2002 .

[107]  T. Abe,et al.  Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries: Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions , 2001 .

[108]  H. Lee,et al.  Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries , 2001 .

[109]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[110]  M. Dresselhaus,et al.  Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications , 2001 .

[111]  H. Fujimoto,et al.  Reduction of the irreversible capacity of a graphite anode by the CVD process , 2001 .

[112]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[113]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[114]  Seung M. Oh,et al.  Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries , 2001 .

[115]  M. Yoshio,et al.  Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery , 2001 .

[116]  T. Tsumura,et al.  Surface modification of natural graphite particles for lithium ion batteries , 2000 .

[117]  Kenji Fukuda,et al.  Effect of Carbon Coating on Electrochemical Performance of Treated Natural Graphite as Lithium‐Ion Battery Anode Material , 2000 .

[118]  M. Yoshio,et al.  Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery , 1999 .

[119]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[120]  J. Dahn,et al.  Reduction of the Irreversible Capacity in Hard‐Carbon Anode Materials Prepared from Sucrose for Li‐Ion Batteries , 1998 .

[121]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[122]  H. Fujimoto,et al.  Charge-discharge mechanism of graphitized mesocarbon microbeads , 1995 .

[123]  H. Fujimoto,et al.  Charge‐Discharge Characteristics of the Mesocarbon Miocrobeads Heat‐Treated at Different Temperatures , 1995 .

[124]  H. Sakaebe,et al.  The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries , 1995 .

[125]  Mika Yokoyama,et al.  Battery characteristics with various carbonaceous materials , 1995 .

[126]  A. Ohta,et al.  High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material , 1993 .

[127]  Hongda Du,et al.  The Effect of Vanadium on Physicochemical and Electrochemical Performances of LiFePO4 Cathode for Lithium Battery , 2011 .

[128]  Jung-Min Kim,et al.  Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose , 2010 .

[129]  T. Abe,et al.  Electrochemical intercalation of lithium ion within graphite from propylene carbonate solutions , 2003 .

[130]  Wu Xu,et al.  A Fusible Orthoborate Lithium Salt with High Conductivity in Solutions , 1999 .