Holes in Generalized Reed–Muller Codes

The possible relative weights of codewords of Generalized Reed-Muller codes are studied. Let <i>RMq</i>(<i>r</i>,<i>m</i>) denote the code of polynomials over the finite field <i>Fq</i> in <i>m</i> variables of total degree at most <i>r</i>. The relative weight of a codeword <i>f</i> ¿ RM<i>q</i>(<i>r</i>,<i>m</i>) is the fraction of nonzero entries in <i>f</i>. The possible relative weights are studied, when the field <i>Fq</i> and the degree <i>r</i> are fixed, and the number of variables <i>m</i> tends to infinity. It is proved that the set of possible weights is sparse-for any <i>¿</i> which is not rational of the form <i>¿ = ¿/q</i> <sup>k</sup>, there exists some <i>¿ > 0</i> such that no weights fall in the interval <i>(¿-¿,¿+¿)</i>. This demonstrates a new property of the weight distribution of Generalized Reed-Muller codes.

[1]  Jean-Marie Goethals,et al.  On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..

[2]  Tadao Kasami,et al.  On the weight structure of Reed-Muller codes , 1970, IEEE Trans. Inf. Theory.

[3]  James Ax,et al.  ZEROES OF POLYNOMIALS OVER FINITE FIELDS. , 1964 .

[4]  Emanuele Viola,et al.  Pseudorandom Bits for Polynomials , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[5]  Shachar Lovett,et al.  Worst Case to Average Case Reductions for Polynomials , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[6]  Ben Green,et al.  The distribution of polynomials over finite fields, with applications to the Gowers norms , 2007, Contributions Discret. Math..

[7]  Shachar Lovett,et al.  Weight Distribution and List-Decoding Size of Reed–Muller Codes , 2012, IEEE Transactions on Information Theory.

[8]  Tadao Kasami,et al.  On the Weight Enumeration of Weights Less than 2.5d of Reed-Muller Codes , 1976, Inf. Control..

[9]  Shachar Lovett,et al.  The List-Decoding Size of Reed-Muller Codes , 2008, Electron. Colloquium Comput. Complex..

[10]  Garrett Birkhoff,et al.  A brief survey of modern algebra , 1953 .

[11]  Neil J. A. Sloane,et al.  The theory of error-correcting codes (north-holland , 1977 .