The genome sequence of the fish pathogen Aliivibrio salmonicida strain LFI1238 shows extensive evidence of gene decay

BackgroundThe fish pathogen Aliivibrio salmonicida is the causative agent of cold-water vibriosis in marine aquaculture. The Gram-negative bacterium causes tissue degradation, hemolysis and sepsis in vivo.ResultsIn total, 4 286 protein coding sequences were identified, and the 4.6 Mb genome of A. salmonicida has a six partite architecture with two chromosomes and four plasmids. Sequence analysis revealed a highly fragmented genome structure caused by the insertion of an extensive number of insertion sequence (IS) elements. The IS elements can be related to important evolutionary events such as gene acquisition, gene loss and chromosomal rearrangements. New A. salmonicida functional capabilities that may have been aquired through horizontal DNA transfer include genes involved in iron-acquisition, and protein secretion and play potential roles in pathogenicity. On the other hand, the degeneration of 370 genes and consequent loss of specific functions suggest that A. salmonicida has a reduced metabolic and physiological capacity in comparison to related Vibrionaceae species.ConclusionMost prominent is the loss of several genes involved in the utilisation of the polysaccharide chitin. In particular, the disruption of three extracellular chitinases responsible for enzymatic breakdown of chitin makes A. salmonicida unable to grow on the polymer form of chitin. These, and other losses could restrict the variety of carrier organisms A. salmonicida can attach to, and associate with. Gene acquisition and gene loss may be related to the emergence of A. salmonicida as a fish pathogen.

[1]  Fabiano L. Thompson,et al.  Biodiversity of Vibrios , 2004, Microbiology and Molecular Biology Reviews.

[2]  Georgios S. Vernikos,et al.  Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands , 2006, Bioinform..

[3]  Henryk Urbanczyk,et al.  Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. , 2007, International journal of systematic and evolutionary microbiology.

[4]  A. Danchin,et al.  Universal replication biases in bacteria , 1999, Molecular microbiology.

[5]  P. Midtlyng A field study on intraperitoneal vaccination of Atlantic salmon (Salmo salarL.) against furunculosis , 1996 .

[6]  C. Andersen Channel-tunnels: outer membrane components of type I secretion systems and multidrug efflux pumps of Gram-negative bacteria. , 2003, Reviews of physiology, biochemistry and pharmacology.

[7]  S. Espelid,et al.  Monoclonal antibodies against Vibrio salmonicida: the causative agent of coldwater vibriosis (‘Hitra disease’) in Atlantic salmon, Salmo salar L. , 1988 .

[8]  K. Klose,et al.  Comparative and Genetic Analyses of the Putative Vibrio cholerae Lipopolysaccharide Core Oligosaccharide Biosynthesis (wav) Gene Cluster , 2002, Infection and Immunity.

[9]  S. Miyoshi,et al.  Actions of Vibrio vulnificus Metalloprotease on Human Plasma Proteinase‐Proteinase Inhibitor Systems: A Comparative Study of Native Protease with Its Derivative Modified by Polyethylene Glycol , 1995, Microbiology and immunology.

[10]  E. Garay,et al.  Incidence of Vibrio cholerae and related vibrios in a coastal lagoon and seawater influenced by lake discharges along an annual cycle , 1985, Applied and environmental microbiology.

[11]  Amos Bairoch,et al.  The PROSITE database, its status in 2002 , 2002, Nucleic Acids Res..

[12]  J. Mekalanos,et al.  Acetylation (O-factor 5) affects the structural and immunological properties of Salmonella typhimurium lipopolysaccharide O antigen , 1995, Infection and immunity.

[13]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[14]  Saul Roseman,et al.  The chitinolytic cascade in Vibrios is regulated by chitin oligosaccharides and a two-component chitin catabolic sensor/kinase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Erik Hjerde,et al.  Prediction and Experimental Testing of Ferric Uptake Regulator Regulons in Vibrios , 2008, Journal of Molecular Microbiology and Biotechnology.

[16]  P. Corn,et al.  Genes involved in Haemophilus influenzae type b capsule expression are frequently amplified. , 1993, The Journal of infectious diseases.

[17]  Søren Brunak,et al.  A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites , 1997, Int. J. Neural Syst..

[18]  S. Espelid,et al.  Isolation and characterization of a surface layer antigen from Vibrio salmonicida , 1988 .

[19]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[20]  M. Tomich,et al.  The tad locus: postcards from the widespread colonization island , 2007, Nature Reviews Microbiology.

[21]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[22]  D. Ussery,et al.  The genomic code: inferring Vibrionaceae niche specialization , 2006, Nature Reviews Microbiology.

[23]  M. Simmonds,et al.  Genome sequence of Yersinia pestis, the causative agent of plague , 2001, Nature.

[24]  S. Roseman,et al.  Chitin Catabolism in the Marine Bacterium Vibrio furnissii , 2000, The Journal of Biological Chemistry.

[25]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[26]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[27]  S. Roseman,et al.  The Chitin Catabolic Cascade in the Marine Bacterium Vibrio furnissii , 1996, The Journal of Biological Chemistry.

[28]  Xiaohua Zhang,et al.  Haemolysins in Vibrio species , 2005, Journal of applied microbiology.

[29]  J. Reidl,et al.  Vibrio cholerae Phage K139: Complete Genome Sequence and Comparative Genomics of Related Phages , 2002, Journal of bacteriology.

[30]  Rob DeSalle,et al.  The Widespread Colonization Island of Actinobacillus actinomycetemcomitans , 2003, Nature Genetics.

[31]  D. Milton Quorum sensing in vibrios: complexity for diversification. , 2006, International journal of medical microbiology : IJMM.

[32]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[33]  S Karlin,et al.  Codon usages in different gene classes of the Escherichia coli genome , 1998, Molecular microbiology.

[34]  P. Midtlyng,et al.  Growth of Atlantic salmon Salmo salar after intraperitoneal administration of vaccines containing adjuvants. , 1998, Diseases of aquatic organisms.

[35]  P. Farabaugh Programmed translational frameshifting. , 1996, Annual review of genetics.

[36]  M. Yasuda,et al.  Roles of Four Chitinases (ChiA, ChiB, ChiC, and ChiD) in the Chitin Degradation System of Marine Bacterium Alteromonas sp. Strain O-7 , 2005, Applied and Environmental Microbiology.

[37]  C. R. Osorio,et al.  Characterization of Heme Uptake Cluster Genes in the Fish Pathogen Vibrio anguillarum , 2004, Journal of bacteriology.

[38]  L. Pane,et al.  Attachment of Vibrio alginolyticus to chitin mediated by chitin-binding proteins. , 1996, Microbiology.

[39]  Eduardo P C Rocha,et al.  Gene essentiality determines chromosome organisation in bacteria. , 2003, Nucleic acids research.

[40]  S. Payne,et al.  The two TonB systems of Vibrio cholerae: redundant and specific functions , 2001, Molecular microbiology.

[41]  P. Reeves,et al.  The variation of dTDP-L-rhamnose pathway genes in Vibrio cholerae. , 2003, Microbiology.

[42]  C. R. Osorio,et al.  Two tonB Systems Function in Iron Transport in Vibrio anguillarum, but Only One Is Essential for Virulence , 2004, Infection and Immunity.

[43]  J. H. Crosa,et al.  Four novel hemolysin genes of Vibrio anguillarum and their virulence to rainbow trout. , 2005, Microbial pathogenesis.

[44]  W. Nelson,et al.  Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  E. Greenberg,et al.  Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Valla,et al.  Development of a gene transfer system for curing of plasmids in the marine fish pathogen Vibrio salmonicida , 1992, Applied and environmental microbiology.

[47]  Shih-Feng Tsai,et al.  Comparative genome analysis of Vibrio vulnificus, a marine pathogen. , 2003, Genome research.

[48]  D. Kirchman,et al.  A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of 1,4-beta-glycanases. , 1998, Microbiology.

[49]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[50]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[51]  B. Barrell,et al.  Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica , 2003, Nature Genetics.

[52]  H. Sørum,et al.  Comparison by Plasmid Profiling of Vibrio salmonicida Strains Isolated from Diseased Fish from Different North European and Canadian Coastal Areas of the Atlantic Ocean , 1993 .

[53]  S. Salzberg,et al.  DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae , 2000, Nature.

[54]  F. Daae,et al.  Plasmid profiling of Vibrio salmonicida for epidemiological studies of cold-water vibriosis in Atlantic salmon (Salmo salar) and cod (Gadus morhua) , 1990, Applied and environmental microbiology.

[55]  D. Gevers,et al.  Phylogeny and Molecular Identification of Vibrios on the Basis of Multilocus Sequence Analysis , 2005, Applied and Environmental Microbiology.

[56]  G. Jung,et al.  Bisucaberin – A dihydroxamate siderophore isolated from Vibrio salmonicida, an important pathogen of farmed Atlantic salmon (Salmo salar) , 2002, Biometals.

[57]  B. Bassler,et al.  Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence , 1993, Molecular microbiology.

[58]  F. Azam,et al.  Widespread N-Acetyl-d-Glucosamine Uptake among Pelagic Marine Bacteria and Its Ecological Implications , 2002, Applied and Environmental Microbiology.

[59]  Kazuhisa Okada,et al.  Vibrios Commonly Possess Two Chromosomes , 2005, Journal of bacteriology.

[60]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[61]  M. W. van der Woude,et al.  Slipped-Strand Mispairing Can Function as a Phase Variation Mechanism in Escherichia coli , 2003, Journal of bacteriology.

[62]  J. Mrázek,et al.  Type VI secretion is a major virulence determinant in Burkholderia mallei , 2007, Molecular microbiology.

[63]  Patricia Siguier,et al.  Insertion sequences in prokaryotic genomes. , 2006, Current opinion in microbiology.

[64]  D. Gevers,et al.  Conservation of the Chitin Utilization Pathway in the Vibrionaceae , 2007, Applied and Environmental Microbiology.

[65]  S. Espelid,et al.  Two serotypes of Vibrio salmonicida isolated from diseased cod (Gadus morhua L.); virulence, immunological studies and vaccination experiments , 1992 .

[66]  D. Kirchman,et al.  Role of Chitin-Binding Proteins in the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin , 1993, Applied and environmental microbiology.

[67]  Mikhail S. Gelfand,et al.  Combining diverse evidence for gene recognition in completely sequenced bacterial genomes , 1998, German Conference on Bioinformatics.

[68]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[69]  S. Roseman,et al.  The Vibrio cholerae chitin utilization program. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Faruque,et al.  Epidemiology, Genetics, and Ecology of ToxigenicVibrio cholerae , 1998, Microbiology and Molecular Biology Reviews.

[71]  Ulrich Dobrindt,et al.  Genomic islands in pathogenic and environmental microorganisms , 2004, Nature Reviews Microbiology.