Tree aggregation for random forest class probability estimation

[1]  Guoyi Zhang,et al.  Bias-corrected random forests in regression , 2012 .

[2]  Yi Lin,et al.  Random Forests and Adaptive Nearest Neighbors , 2006 .

[3]  Cheng Chen,et al.  SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting , 2020, Bioinform..

[4]  I-Cheng Yeh,et al.  The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients , 2009, Expert Syst. Appl..

[5]  Gérard Biau,et al.  Analysis of a Random Forests Model , 2010, J. Mach. Learn. Res..

[6]  Hongwei Ding,et al.  Trees Weighting Random Forest Method for Classifying High-Dimensional Noisy Data , 2010, 2010 IEEE 7th International Conference on E-Business Engineering.

[7]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[8]  Jean-Philippe Vert,et al.  Consistency of Random Forests , 2014, 1405.2881.

[9]  Tom Bylander,et al.  Estimating Generalization Error on Two-Class Datasets Using Out-of-Bag Estimates , 2002, Machine Learning.

[10]  Achim Zeileis,et al.  Bias in random forest variable importance measures: Illustrations, sources and a solution , 2007, BMC Bioinformatics.

[11]  Andreas Ziegler,et al.  ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R , 2015, 1508.04409.

[12]  Silke Janitza,et al.  On the overestimation of random forest’s out-of-bag error , 2018, PloS one.

[13]  Dean R. De Cock,et al.  Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester Regression Project , 2011 .

[14]  J. Friedman Multivariate adaptive regression splines , 1990 .

[15]  K. Hornik,et al.  Unbiased Recursive Partitioning: A Conditional Inference Framework , 2006 .

[16]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[17]  Marko Robnik-Sikonja,et al.  Improving Random Forests , 2004, ECML.

[18]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[19]  Achim Zeileis,et al.  Partykit: a modular toolkit for recursive partytioning in R , 2015, J. Mach. Learn. Res..

[20]  A. Buja,et al.  Loss Functions for Binary Class Probability Estimation and Classification: Structure and Applications , 2005 .

[21]  Luc Devroye,et al.  On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification , 2010, J. Multivar. Anal..

[22]  Hemant Ishwaran,et al.  Random Survival Forests , 2008, Wiley StatsRef: Statistics Reference Online.

[23]  Stefano Nembrini,et al.  The revival of the Gini importance? , 2018, Bioinform..

[24]  Achim Zeileis,et al.  BMC Bioinformatics BioMed Central Methodology article Conditional variable importance for random forests , 2008 .

[25]  Luc Devroye,et al.  Consistency of Random Forests and Other Averaging Classifiers , 2008, J. Mach. Learn. Res..

[26]  Robert R. Freimuth,et al.  A weighted random forests approach to improve predictive performance , 2013, Stat. Anal. Data Min..

[27]  Hemant Ishwaran,et al.  Evaluating Random Forests for Survival Analysis using Prediction Error Curves. , 2012, Journal of statistical software.