Looking at bent wires – -codimension and the vanishing topology of parametrized curve singularities

Projecting a knot onto a plane – or, equivalently, looking at it through one eye – one sees a more or less complicated plane curve with a number of crossings (‘nodes’); viewing it from certain positions, some other more complicated singularities appear. If one spends a little time experimenting, looking at the knot from different points of view, then provided the knot is generic, one can convince oneself that there is only a rather short list of essentially distinct local pictures (singularities) – see Fig. 3 below. All singularities other than nodes are unstable: by moving one's eye slightly, one can make them break up into nodes. For each type X the following two numbers can easily be determined experimentally: 1. the codimension in ℝ3 of the set View(X) of centres of projection (viewpoints) for which a singularity of type X appears, and 2. the maximum number of nodes n into which the singularity X splits when the centre of projection is moved.

[1]  J. Damon,et al.  $$A$$ and the vanishing topology of discriminants , 1991 .

[2]  T. Gaffney,et al.  Weighted homogeneous maps from the plane to the plane , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  David Mond,et al.  Singularities of the Exponential Map of the Tangent Bundle Associated with an Immersion , 1986 .

[4]  E. Looijenga,et al.  Milnor number and Tjurina number of complete intersections , 1985 .

[5]  J. David Projection‐Generic Curves , 1983 .

[6]  Charles Terence Clegg Wall,et al.  Finite Determinacy of Smooth Map‐Germs , 1981 .

[7]  G. Greuel,et al.  Dualität in der lokalen Kohomologie isolierter Singularitäten , 1980 .

[8]  N. A'campo Le groupe de monodromie du déploiement des singularités isolées de courbes planes I , 1975 .

[9]  D. Burghelea,et al.  Local homological properties of analytic sets , 1972 .

[10]  Kyoji Saito,et al.  Quasihomogene isolierte Singularitäten von Hyperflächen , 1971 .

[11]  J. Mather Stability of C ∞ Mappings: II. Infinitesimal Stability Implies Stability , 1969 .

[12]  D. Mond Vanishing cycles for analytic maps , 1991 .

[13]  G. R. Pellikaan,et al.  Fitting ideals and multiple points of analytic mappings , 1989 .

[14]  J. Martinet Singularités des fonctions et applications différentiables , 1977 .

[15]  S. Gusein-Zade Dynkin diagrams for singularities of functions of two variables , 1974 .

[16]  J. Mather Stability of C ∞ mappings: VI the nice dimensions , 1971 .

[17]  J. Milnor Singular points of complex hypersurfaces , 1968 .