Graded potentials and action potentials in the large ocellar interneurons of the bee
暂无分享,去创建一个
[1] G. Hoyle. Functioning of the Insect Ocellar Nerve , 1955 .
[2] P. Ruck. Electrophysiology of the Insect Dorsal Ocellus : II. Mechanisms of generation and inhibition of impulses in the ocellar nerve of dragonflies , 1961 .
[3] P. Ruck. Electrophysiology of the Insect Dorsal Ocellus , 1961, The Journal of General Physiology.
[4] Burkhard Schricker,et al. Die Orientierung der Honigbiene in der Dmmerung: Zugleich ein Beitrag zur Frage der Ocellenfunktion bei Bienen , 1965 .
[5] Burkhard Schricker. Die Orientierung der Honigbiene in der Dämmerung , 1965, Zeitschrift für vergleichende Physiologie.
[6] L. Goodman,et al. The Structure and Function of the Insect Dorsal Ocellus , 1970 .
[7] J. Dowling,et al. Neural Organization of the Median Ocellus of the Dragonfly , 1972, The Journal of general physiology.
[8] J. Dowling,et al. Neural Organization of the Median Ocellus of the Dragonfly , 1972, The Journal of general physiology.
[9] B. Rosser,et al. A Study of the Afferent Pathways of the Dragonfly Lateral Ocellus from Extra-Cellularly Recorded Spike Discharges , 1974 .
[10] C. R. Fourtner,et al. Nonspiking interneurons in walking system of the cockroach. , 1975, Journal of neurophysiology.
[11] J. L. Gould,et al. Honey bee recruitment: the dance-language controversy. , 1975, Science.
[12] J. Erber. The Detection of Real and Apparent Motion , 1976 .
[13] M. Burrows,et al. Transmission without spikes between locust interneurones and motoneurones , 1976, Nature.
[14] The detection of real and apparent motion by the crabLeptograpsus variegatus: I. Behaviour , 1976 .
[15] R. Hengstenberg. Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.
[16] W. W. Stewart,et al. Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer , 1978, Cell.
[17] A. E. Stuart,et al. Neuronal properties underlying processing of visual information in the barnacle , 1978, Nature.
[18] J. Erber. Neural correlates of non-associative and associative learning in the honeybee. , 1980 .
[19] A. E. Stuart,et al. Transformation of signals by interneurones in the barnacle's visual pathway , 1981, The Journal of physiology.
[20] S. Laughlin. Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .
[21] H. Hertel. Chromatic properties of identified interneurons in the optic lobes of the bee , 1980, Journal of comparative physiology.
[22] L. Goodman,et al. Visual interneurons in the bee brain: Synaptic organisation and transmission by graded potentials , 1979, Journal of comparative physiology.
[23] L. Goodman,et al. Ocellar projections within the central nervous system of the worker honey bee, Apis mellifera , 1977, Cell and Tissue Research.
[24] C. Goodman,et al. Anatomy of the ocellar interneurons of acridid grasshoppers , 1976, Cell and Tissue Research.
[25] Norbert Metschl. Elektrophysiologische Untersuchungen an den Ocellen von Calliphora , 1963, Zeitschrift für vergleichende Physiologie.
[26] T. Heinzeller. Second-order ocellar neurons in the brain of the honeybee (Apis mellifera) , 1976, Cell and Tissue Research.
[27] H. Autrum,et al. Die Arbeitsweise der Ocellen der Insekten , 1963, Zeitschrift für vergleichende Physiologie.
[28] C. Goodman,et al. Anatomy of the ocellar interneurons of acridid grasshoppers , 1976, Cell and Tissue Research.
[29] R. Menzel,et al. Visual interneurons in the median protocerebrum of the bee , 2004, Journal of comparative physiology.
[30] J. Patterson,et al. Intracellular responses of procion filled cells and whole nerve cobalt impregnation in the dragonfly median ocellus , 1980, Journal of comparative physiology.
[31] Martin Wilson. The origin and properties of discrete hyperpolarising potentials in the second order cells of locust ocellus , 1978, Journal of comparative physiology.
[32] F. Zettler,et al. Active and passive axonal propagation of non-spike signals in the retina ofCalliphora , 1973, Journal of comparative physiology.
[33] L. Goodman,et al. The projection of ocellar neurons within the brain of the Locust, Schistocerca gregaria , 2004, Cell and Tissue Research.
[34] L. Goodman,et al. Intracellular responses of receptor cells and second — Order cells in the ocelli of the desert locust,Schistocerca gregaria , 1974, Journal of comparative physiology.
[35] Matti Järvilehto,et al. Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowfly Calliphora , 1970, Zeitschrift für vergleichende Physiologie.
[36] Martin Wilson. Generation of graded potential signals in the second order cells of locust ocellus , 1978, Journal of comparative physiology.
[37] L. Goodman,et al. Lateral ocellar nerve projections in the dragonfly brain , 1978, Cell and Tissue Research.
[38] D. Sandeman,et al. The detection of real and apparent motion by the crabLeptograpsus variegatus , 1976, Journal of comparative physiology.
[39] Simon B. Laughlin,et al. Neural integration in the first optic neuropile of dragonflies , 2004, Journal of comparative physiology.
[40] H. Kondo. Efferent system of the lateral ocellus in the dragonfly: Its relationships with the ocellar afferent units, the compound eyes, and the wing sensory system , 1978, Journal of comparative physiology.
[41] R. Menzel. Spectral sensitivity of monopolar cells in the bee lamina , 1974, Journal of comparative physiology.
[42] Martin Wilson,et al. The functional organisation of locust ocelli , 1978, Journal of comparative physiology.
[43] L. Goodman,et al. Ocellar connections with the ventral nerve cord in the locust,Schistocerca gregaria: Electrical and anatomical characteristics , 2004, Journal of comparative physiology.
[44] Active and Passive Axonal Propagation of Non-Spike Signals in the Retina of Calliphora , 2022 .