Efficient octilinear Steiner tree construction based on spanning graphs

0ctilinear interconnect is a promising technique to shorten wire lengths. We present two practical heuristic octilinear Steiner tree (OSMT) algorithms in the paper. They are both based on octilinear spanning graphs. The one by edge substitution (OST-E) has a worst case running time of O(nlogn) and similar performance as the batched greedy algorithm[9]. The other one by triangle contraction (OST-T) has a small increase in running time and better performance. Experiments on both industry and random test cases are conducted.

[1]  Chris Coulston Constructing exact octagonal steiner minimal trees , 2003, GLSVLSI '03.

[2]  Frank K. Hwang,et al.  An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees , 1979, JACM.

[3]  Alex Zelikovsky,et al.  An 11/6-approximation algorithm for the network steiner problem , 1993, Algorithmica.

[4]  C. Chiang Octilinear Steiner tree construction , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..

[5]  Michael Kaufmann,et al.  Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem , 1993, ISAAC.

[6]  Steven L. Teig,et al.  The X architecture: not your father's diagonal wiring , 2002, SLIP '02.

[7]  Mary Jane Irwin,et al.  An edge-based heuristic for Steiner routing , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Hai Zhou,et al.  Efficient minimum spanning tree construction without Delaunay triangulation , 2002, Inf. Process. Lett..

[9]  Chak-Kuen Wong,et al.  Hierarchical Steiner tree construction in uniform orientations , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Gabriel Robins On optimal interconnections , 1992 .

[11]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[12]  Andrew B. Kahng,et al.  Highly scalable algorithms for rectilinear and octilinear Steiner trees , 2003, ASP-DAC '03.

[13]  Hai Zhou Efficient Steiner tree construction based on spanning graphs , 2004, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Andrew B. Kahng,et al.  A new class of iterative Steiner tree heuristics with good performance , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Cheng-Kok Koh,et al.  Manhattan or non-Manhattan?: a study of alternative VLSI routing architectures , 2000, ACM Great Lakes Symposium on VLSI.

[16]  D. T. Lee,et al.  On Steiner tree problem with 45/spl deg/ routing , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.