Efficient octilinear Steiner tree construction based on spanning graphs
暂无分享,去创建一个
Xianlong Hong | Qi Zhu | Yang Yang | Tong Jing | Hai Zhou
[1] Chris Coulston. Constructing exact octagonal steiner minimal trees , 2003, GLSVLSI '03.
[2] Frank K. Hwang,et al. An O(n log n) Algorithm for Rectilinear Minimal Spanning Trees , 1979, JACM.
[3] Alex Zelikovsky,et al. An 11/6-approximation algorithm for the network steiner problem , 1993, Algorithmica.
[4] C. Chiang. Octilinear Steiner tree construction , 2002, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002..
[5] Michael Kaufmann,et al. Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem , 1993, ISAAC.
[6] Steven L. Teig,et al. The X architecture: not your father's diagonal wiring , 2002, SLIP '02.
[7] Mary Jane Irwin,et al. An edge-based heuristic for Steiner routing , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[8] Hai Zhou,et al. Efficient minimum spanning tree construction without Delaunay triangulation , 2002, Inf. Process. Lett..
[9] Chak-Kuen Wong,et al. Hierarchical Steiner tree construction in uniform orientations , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[10] Gabriel Robins. On optimal interconnections , 1992 .
[11] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[12] Andrew B. Kahng,et al. Highly scalable algorithms for rectilinear and octilinear Steiner trees , 2003, ASP-DAC '03.
[13] Hai Zhou. Efficient Steiner tree construction based on spanning graphs , 2004, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[14] Andrew B. Kahng,et al. A new class of iterative Steiner tree heuristics with good performance , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[15] Cheng-Kok Koh,et al. Manhattan or non-Manhattan?: a study of alternative VLSI routing architectures , 2000, ACM Great Lakes Symposium on VLSI.
[16] D. T. Lee,et al. On Steiner tree problem with 45/spl deg/ routing , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.