Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method

The Finite Cell Method (FCM) is an embedded domain method, which combines the fictitious domain approach with high-order finite elements, adaptive integration, and weak imposition of unfitted Dirichlet boundary conditions. For smooth problems, FCM has been shown to achieve exponential rates of convergence in energy norm, while its structured cell grid guarantees simple mesh generation irrespective of the geometric complexity involved. The present contribution first unhinges the FCM concept from a special high-order basis. Several benchmarks of linear elasticity and a complex proximal femur bone with inhomogeneous material demonstrate that for small deformation analysis, FCM works equally well with basis functions of the p-version of the finite element method or high-order B-splines. Turning to large deformation analysis, it is then illustrated that a straightforward geometrically nonlinear FCM formulation leads to the loss of uniqueness of the deformation map in the fictitious domain. Therefore, a modified FCM formulation is introduced, based on repeated deformation resetting, which assumes for the fictitious domain the deformation-free reference configuration after each Newton iteration. Numerical experiments show that this intervention allows for stable nonlinear FCM analysis, preserving the full range of advantages of linear elastic FCM, in particular exponential rates of convergence. Finally, the weak imposition of unfitted Dirichlet boundary conditions via the penalty method, the robustness of FCM under severe mesh distortion, and the large deformation analysis of a complex voxel-based metal foam are addressed.

[1]  I. Babuska The Finite Element Method with Penalty , 1973 .

[2]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[3]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[4]  Michael J. Miller,et al.  Introduction to Computer Graphics , 1984, Developing Graphics Frameworks with Python and OpenGL.

[5]  K. Höllig Finite element methods with B-splines , 1987 .

[6]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[7]  E. Rank,et al.  hp‐Version finite elements for geometrically non‐linear problems , 1995 .

[8]  D. Tiba,et al.  An Embedding of Domains Approach in Free Boundary Problems andOptimal Design , 1995 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  Barna A. Szabó,et al.  FORMULATION OF GEOMETRICALLY NON-LINEAR PROBLEMS IN THE SPATIAL REFERENCE FRAME , 1997 .

[11]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[12]  R. D. Wood,et al.  Nonlinear Continuum Mechanics for Finite Element Analysis , 1997 .

[13]  Satya N. Atluri,et al.  A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method , 1998 .

[14]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[15]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[16]  Ernst Rank,et al.  The p‐version of the finite element method for three‐dimensional curved thin walled structures , 2001 .

[17]  Peter Wriggers,et al.  Aspects of the computational testing of the mechanical properties of microheterogeneous material samples , 2001 .

[18]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .

[19]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[20]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[21]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[22]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[23]  G. Golub,et al.  Acta Numerica 2002: Structured inverse eigenvalue problems , 2002 .

[24]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[25]  Charbel Farhat,et al.  A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part 2: Neumann boundary conditions , 2002 .

[26]  I. Babuska,et al.  Meshless and Generalized Finite Element Methods: A Survey of Some Major Results , 2003 .

[27]  Karl Kunisch,et al.  Shape Optimization and Fictitious Domain Approach for Solving Free Boundary Problems of Bernoulli Type , 2003, Comput. Optim. Appl..

[28]  Ernst Rank,et al.  p-FEM applied to finite isotropic hyperelastic bodies , 2003 .

[29]  E. Süli,et al.  An introduction to numerical analysis , 2003 .

[30]  Joseph E. Bishop,et al.  Rapid stress analysis of geometrically complex domains using implicit meshing , 2003 .

[31]  J. Keyak,et al.  Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. , 2003, Medical engineering & physics.

[32]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[33]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[34]  Martin H. Sadd,et al.  Elasticity: Theory, Applications, and Numerics , 2004 .

[35]  Olivier Pironneau,et al.  A FICTITIOUS DOMAIN BASED GENERAL PDE SOLVER , 2004 .

[36]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[37]  Hans-Joachim Bungartz,et al.  Introduction To Computer Graphics (Graphics Series) , 2004 .

[38]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[39]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[40]  T. Belytschko,et al.  Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .

[41]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[42]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[43]  R. Glowinski,et al.  Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems , 2007 .

[44]  Ernst Rank,et al.  Finite cell method , 2007 .

[45]  P. Angot,et al.  A Fictitious domain approach with spread interface for elliptic problems with general boundary conditions , 2007 .

[46]  L. Joskowicz,et al.  A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. , 2007, Journal of biomechanical engineering.

[47]  Barbara Chapman,et al.  Using OpenMP: Portable Shared Memory Parallel Programming (Scientific and Engineering Computation) , 2007 .

[48]  Spencer J. Sherwin,et al.  A comparison of fictitious domain methods appropriate for spectral/hp element discretisations , 2008 .

[49]  Rainald Löhner,et al.  Adaptive embedded and immersed unstructured grid techniques , 2008 .

[50]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[51]  Marco Viceconti,et al.  An accurate estimation of bone density improves the accuracy of subject-specific finite element models. , 2008, Journal of biomechanics.

[52]  Barbara Chapman,et al.  Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.

[53]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[54]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[55]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[56]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[57]  Valentino Pediroda,et al.  Fictitious Domain approach with hp-finite element approximation for incompressible fluid flow , 2009, J. Comput. Phys..

[58]  S. H. Lui,et al.  Spectral domain embedding for elliptic PDEs in complex domains , 2009 .

[59]  Ernst Rank,et al.  The Finite Cell Method: High order simulation of complex structures without meshing , 2009 .

[60]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[61]  S. Dong,et al.  A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems , 2009 .

[62]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[63]  C. Engwer,et al.  An unfitted finite element method using discontinuous Galerkin , 2009 .

[64]  E. Rank,et al.  Numerical investigations of foam-like materials by nested high-order finite element methods , 2009 .

[65]  Zohar Yosibash,et al.  Validation of subject-specific automated p-FE analysis of the proximal femur. , 2009, Journal of biomechanics.

[66]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[67]  Isaac Harari,et al.  Analysis of an efficient finite element method for embedded interface problems , 2010 .

[68]  Ralf-Peter Mundani,et al.  The finite cell method for geometrically nonlinear problems of solid mechanics , 2010 .

[69]  Ernst Rank,et al.  The Finite Cell Method for Elasto-Plastic Problems , 2010 .

[70]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[71]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[72]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[73]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[74]  Ernst Rank,et al.  Shell Finite Cell Method: A high order fictitious domain approach for thin-walled structures , 2011 .

[75]  Peter Hansbo,et al.  A hierarchical NXFEM for fictitious domain simulations , 2011 .

[76]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[77]  Ralf-Peter Mundani,et al.  The finite cell method for solute transport problems in porous media , 2011 .

[78]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[79]  E. Rank,et al.  Topology optimization using the finite cell method , 2012 .

[80]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[81]  Ernst Rank,et al.  An efficient integration technique for the voxel‐based finite cell method , 2012 .

[82]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[83]  Ernst Rank,et al.  The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.

[84]  Ernst Rank,et al.  The Finite Cell Method for linear thermoelasticity , 2012, Comput. Math. Appl..

[85]  Ernst Rank,et al.  Numerical homogenization of heterogeneous and cellular materials utilizing the finite cell method , 2012, Computational Mechanics.

[86]  Z. Pammer,et al.  The p–version of the finite–element method , 2014 .