Seismic imaging with the generalized Radon transform: a curvelet transform perspective

A key challenge in the seismic imaging of reflectors using surface reflection data is the subsurface illumination produced by a given data set and for a given complexity of the background model (of wave speeds). The imaging is described here by the generalized Radon transform. To address the illumination challenge and enable (accurate) local parameter estimation, we develop a method for partial reconstruction. We make use of the curvelet transform, the structure of the associated matrix representation of the generalized Radon transform, which needs to be extended in the presence of caustics and phase linearization. We pair an image target with partial waveform reflection data, and develop a way to solve the matrix normal equations that connect their curvelet coefficients via diagonal approximation. Moreover, we develop an approximation, reminiscent of Gaussian beams, for the computation of the generalized Radon transform matrix elements only making use of multiplications and convolutions, given the underlying ray geometry; this leads to computational efficiency. Throughout, we exploit the (wave number) multi-scale features of the dyadic parabolic decomposition underlying the curvelet transform and establish approximations that are accurate for sufficiently fine scales. The analysis we develop here has its roots in and represents a unified framework for (double) beamforming and beam-stack imaging, parsimonious pre-stack Kirchhoff migration, pre-stack plane-wave (Kirchhoff) migration and delayed-shot pre-stack migration.

[1]  George A. McMechan,et al.  Parsimonious Kirchhoff Depth Migration , 1999 .

[2]  V. Guillemin,et al.  On some results of Gel fand in integral geometry , 1984 .

[3]  M. V. Hoop,et al.  NONLINEAR APPROXIMATION OF FUNCTIONS BY SUMS OF WAVE PACKETS ∗ , 2011 .

[4]  W. DeGrado,et al.  Seismostratigraphy and Thermal Structure of Earth ’ s Core-Mantle Boundary Region , 2007 .

[5]  J. Capon Investigation of long‐period noise at the large aperture seismic array , 1969 .

[6]  Maslov asymptotic extension of generalized Radon transform inversion in anisotropic elastic media: a least-squares approach , 2000 .

[7]  Fredrik Andersson,et al.  A Multi-Scale Approach to Hyperbolic Evolution Equations with Limited Smoothness , 2008 .

[8]  M. V. Hoop,et al.  The resolving power of seismic amplitude data: An anisotropic inversion/migration approach , 1999 .

[9]  E. Candès,et al.  Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .

[10]  A. P. E. ten Kroode,et al.  A microlocal analysis of migration , 1998 .

[11]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[12]  Beam‐Stack Imaging using a small aperture array , 1991 .

[13]  P. Shearer,et al.  Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors , 1998 .

[14]  Slowness-backazimuth weighted migration: A new array approach to a high-resolution image , 2007 .

[15]  Elias M. Stein,et al.  Regularity properties of Fourier integral operators , 1991 .

[16]  Hart F. Smith A Hardy space for Fourier integral operators , 1998 .

[17]  Rakesh A Linearised inverse problem for the wave equation , 1988 .

[18]  Laurent Demanet,et al.  Fast Computation of Fourier Integral Operators , 2006, SIAM J. Sci. Comput..

[19]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[20]  Hart F. Smith A parametrix construction for wave equations with $C^{1,1}$ coefficients , 1998 .

[21]  Faqi Liu,et al.  Toward a unified analysis for source plane-wave migration , 2006 .

[22]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[23]  Michael G. Bostock,et al.  Multiparameter two-dimensional inversion of scattered teleseismic body waves 1. Theory for oblique incidence , 2001 .

[24]  Delayed-shot 3-D Prestack Depth Migration , 2003 .

[25]  M. V. de Hoop,et al.  Imaging of structure at and near the core-mantle boundary using a generalized radon transform: 2. Statistical inference of singularities , 2007 .

[26]  R. Hilst,et al.  Imaging the lowermost mantle (D?) and the core–mantle boundary with SKKS coda waves , 2008 .

[27]  E. Candès,et al.  Continuous curvelet transform , 2003 .

[28]  Maarten V. de Hoop,et al.  Generalized Radon transform inversions for reflectivity in anisotropic elastic media , 1997 .

[29]  Stefan Buske,et al.  Fresnel volume migration of multicomponent data , 2005 .

[30]  A. Kiselev,et al.  Highly localized solutions of the wave equation , 2000 .

[31]  Maarten V. de Hoop,et al.  Microlocal analysis of seismic inverse scattering in anisotropic elastic media , 2002 .

[32]  L. Hörmander,et al.  The Analysis of Linear Partial Differential Operators IV , 1985 .

[33]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[34]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[35]  Sebastian Rost,et al.  ARRAY SEISMOLOGY: METHODS AND APPLICATIONS , 2002 .

[36]  Gary L. Pavlis,et al.  Three‐dimensional, prestack, plane wave migration of teleseismic P‐to‐S converted phases: 2. Stacking multiple events , 2003 .

[37]  K. Chambers,et al.  The Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors , 2006, Science.

[38]  P. Ma,et al.  Seismostratigraphy and Thermal Structure of Earth's Core-Mantle Boundary Region , 2007, Science.

[39]  Huub Douma,et al.  Leading-order seismic imaging using curvelets , 2007 .

[40]  Victor Pavlovich Maslov,et al.  Semi-classical approximation in quantum mechanics , 1981 .

[41]  T. V. Bugueva,et al.  A linearized inverse problem for the wave equation in a sphere , 1996 .

[42]  J. Coyle Inverse Problems , 2004 .

[43]  Douglas E. Miller,et al.  Generalized radon transform/amplitude versus angle (GRT/AVA) migration/inversion in anisotropic media , 1994, Optics & Photonics.

[44]  E. Candès,et al.  Continuous curvelet transform: II. Discretization and frames , 2005 .

[45]  Michael G. Bostock,et al.  Multiparameter two-dimensional inversion of scattered teleseismic body waves 3. Application to the Cascadia 1993 data set , 2001 .

[46]  J. Ralston,et al.  Review: Jean Leray, Lagrangian analysis and quantum mechanics, a mathematical structure related to asymptotic expansions and the Maslov index, and V. P. Maslov and M. V. Fedoriuk, Semi-classical approximation in quantum mechanics , 1983 .

[47]  Barbara Romanowicz,et al.  GLOBAL MANTLE TOMOGRAPHY: Progress Status in the Past 10 Years , 2003 .

[48]  Christiaan C. Stolk,et al.  Microlocal analysis of a seismic linearized inverse problem , 2000 .

[49]  D. Davies,et al.  Vespa Process for Analysis of Seismic Signals , 1971 .

[50]  William W. Symes,et al.  Global solution of a linearized inverse problem for the wave equation , 1997 .

[51]  F. Herrmann,et al.  Sparsity- and continuity-promoting seismic image recovery with curvelet frames , 2008 .

[52]  Charles C. Mosher,et al.  Seismic imaging with offset plane waves , 1996, Optics & Photonics.

[53]  F. Scherbaum,et al.  Double beam imaging: Mapping lower mantle heterogeneities using combinations of source and receiver arrays , 1997 .

[54]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[55]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[56]  Michael E. Taylor,et al.  The Analysis of Linear Partial Differential Operators, Vols I & II. , 1985 .

[57]  F. Scherbaum,et al.  Mid mantle scatterers near the Mariana Slab detected with a double array method , 2001 .

[58]  Huub Douma,et al.  Explicit expressions for prestack map time migration in isotropic and VTI media and the applicability of map depth migration in heterogeneous anisotropic media , 2006 .

[59]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[60]  L. Tenorio,et al.  Imaging of structure at and near the core mantle boundary using a generalized radon transform: 1. Construction of image gathers , 2006 .

[61]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[62]  Mrinal K. Sen,et al.  Prestack plane-wave Kirchhoff migration in laterally varying media , 1996 .