An Algebraic Theory of Complexity for Valued Constraints: Establishing a Galois Connection

The complexity of any optimisation problem depends critically on the form of the objective function. Valued constraint satisfaction problems are discrete optimisation problems where the function to be minimised is given as a sum of cost functions defined on specified subsets of variables. These cost functions are chosen from some fixed set of available cost functions, known as a valued constraint language. We show in this paper that when the costs are non-negative rational numbers or infinite, then the complexity of a valued constraint problem is determined by certain algebraic properties of this valued constraint language, which we call weighted polymorphisms. We define a Galois connection between valued constraint languages and sets of weighted polymorphisms and show how the closed sets of this Galois connection can be characterised. These results provide a new approach in the search for tractable valued constraint languages.

[1]  Vladimir Kolmogorov,et al.  The complexity of conservative finite-valued CSPs , 2010, ArXiv.

[2]  Libor Barto,et al.  Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[3]  H. Narayanan,et al.  A note on the minimization of symmetric and general submodular functions , 2003, Discret. Appl. Math..

[4]  Martin C. Cooper,et al.  Soft Constraints: Complexity and Multimorphisms , 2003, CP.

[5]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[6]  Ferdinand Börner Basics of Galois Connections , 2008, Complexity of Constraints.

[7]  Martin C. Cooper,et al.  Supermodular functions and the complexity of MAX CSP , 2005, Discret. Appl. Math..

[8]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.

[9]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[10]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[11]  Peter Jeavons,et al.  The complexity of maximal constraint languages , 2001, STOC '01.

[12]  Andrei A. Bulatov A graph of a relational structure and constraint satisfaction problems , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[13]  Stanislav Zivny,et al.  On Minimal Weighted Clones , 2011, CP.

[14]  Nadia Creignou,et al.  A Dichotomy Theorem for Maximum Generalized Satisfiability Problems , 1995, J. Comput. Syst. Sci..

[15]  R. McKenzie,et al.  Varieties with few subalgebras of powers , 2009 .

[16]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[17]  J. A. d'Auriac,et al.  Optimal cooperation and submodularity for computing Potts' partition functions with a large number of states , 2002, cond-mat/0204055.

[18]  Satoru Iwata,et al.  A simple combinatorial algorithm for submodular function minimization , 2009, SODA.

[19]  Martin C. Cooper,et al.  An Algebraic Characterisation of Complexity for Valued Constraint , 2006, CP.

[20]  William H. Cunningham,et al.  Minimum cuts, modular functions, and matroid polyhedra , 1985, Networks.

[21]  Satoru Iwata,et al.  Submodular function minimization , 2007, Math. Program..

[22]  L. A. Kaluzhnin,et al.  Galois theory for post algebras. I , 1969 .

[23]  James B. Orlin,et al.  A faster strongly polynomial time algorithm for submodular function minimization , 2007, Math. Program..

[24]  Vladimir Kolmogorov,et al.  Generalising tractable VCSPs defined by symmetric tournament pair multimorphisms , 2010, ArXiv.

[25]  Martin C. Cooper,et al.  A Maximal Tractable Class of Soft Constraints , 2003, IJCAI.

[26]  藤重 悟 Submodular functions and optimization , 1991 .

[27]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[28]  Marc Gyssens,et al.  Closure properties of constraints , 1997, JACM.

[29]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[30]  Libor Barto,et al.  CSP dichotomy for special triads , 2009 .

[31]  Vladimir Kolmogorov,et al.  The complexity of conservative valued CSPs , 2011, JACM.

[32]  Frédéric Benhamou Principles and Practice of Constraint Programming - CP 2006, 12th International Conference, CP 2006, Nantes, France, September 25-29, 2006, Proceedings , 2006, CP.

[33]  Stanislav Zivny,et al.  The expressive power of binary submodular functions , 2008, Discret. Appl. Math..

[34]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[35]  Marc Gyssens,et al.  Decomposing Constraint Satisfaction Problems Using Database Techniques , 1994, Artif. Intell..

[36]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[37]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison , 1999, Constraints.

[38]  Peter Jonsson,et al.  The approximability of MAX CSP with fixed-value constraints , 2006, JACM.

[39]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[40]  Maurice Queyranne,et al.  Minimizing symmetric submodular functions , 1998, Math. Program..

[41]  Peter Jonsson,et al.  The Approximability of Three-valued MAX CSP , 2004, SIAM J. Comput..

[42]  Martin C. Cooper,et al.  A Complete Characterization of Complexity for Boolean Constraint Optimization Problems , 2004, CP.

[43]  Michel X. Goemans,et al.  Minimum Cuts , 2010, Encyclopedia of Machine Learning.

[44]  Martin C. Cooper,et al.  The complexity of soft constraint satisfaction , 2006, Artif. Intell..

[45]  Libor Barto,et al.  The Dichotomy for Conservative Constraint Satisfaction Problems Revisited , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[46]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[47]  H. Narayanan Submodular functions and electrical networks , 1997 .

[48]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[49]  Libor Barto,et al.  New Conditions for Taylor Varieties and CSP , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[50]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[51]  Stanislav Zivny,et al.  The expressive power of valued constraints: Hierarchies and collapses , 2008, Theor. Comput. Sci..

[52]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[53]  Martin C. Cooper,et al.  Generalising submodularity and horn clauses: Tractable optimization problems defined by tournament pair multimorphisms , 2008, Theor. Comput. Sci..

[54]  Thomas Schiex,et al.  Semiring-Based CSPs and Valued CSPs: Basic Properties and Comparison , 1995, Over-Constrained Systems.

[55]  Peter Jeavons,et al.  On the Algebraic Structure of Combinatorial Problems , 1998, Theor. Comput. Sci..

[56]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[57]  Peter Jeavons,et al.  The Expressive Power of Valued Constraints: Hierarchies and Collapses , 2007, CP.

[58]  D. Geiger CLOSED SYSTEMS OF FUNCTIONS AND PREDICATES , 1968 .