Ultrafast carrier dynamics in nanostructures for solar fuels.

Sunlight can be used to drive chemical reactions to produce fuels that store energy in chemical bonds. These fuels, such as hydrogen from splitting water, have much larger energy density than do electrical storage devices. The efficient conversion of clean, sustainable solar energy using photoelectrochemical and photocatalytic systems requires precise control over the thermodynamics, kinetics, and structural aspects of materials and molecules. Generation, thermalization, trapping, interfacial transfer, and recombination of photoexcited charge carriers often occur on femtosecond to picosecond timescales. These short timescales limit the transport of photoexcited carriers to nanometer-scale distances, but nanostructures with high surface-to-volume ratios can enable both significant light absorption and high quantum efficiency. This review highlights the importance of understanding ultrafast carrier dynamics for the generation of solar fuels, including case studies on colloidal nanostructures, nanostructured photoelectrodes, and photoelectrodes sensitized with molecular chromophores and catalysts.

[1]  Peter Lindblad,et al.  Biomimetic and microbial approaches to solar fuel generation. , 2009, Accounts of chemical research.

[2]  D. Cahen,et al.  All-solid-state, semiconductor-sensitized nanoporous solar cells. , 2012, Accounts of chemical research.

[3]  P. Kamat Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. , 2012, The journal of physical chemistry letters.

[4]  N. Dimitrijević,et al.  Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. , 2011, Journal of the American Chemical Society.

[5]  Joel W. Ager,et al.  Net primary energy balance of a solar-driven photoelectrochemical water-splitting device , 2013 .

[6]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[7]  A. Bard,et al.  HETEROGENEOUS PHOTOCATALYTIC PREPARATION OF SUPPORTED CATALYSTS. PHOTODEPOSITION OF PLATINUM ON TITANIUM DIOXIDE POWDER AND OTHER SUBSTRATES , 1978 .

[8]  Jason B. Baxter,et al.  Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing , 2012 .

[9]  John Turner Oxygen catalysis: The other half of the equation. , 2008, Nature materials.

[10]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[11]  Michael Grätzel,et al.  Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting , 2009 .

[12]  J. Kennedy,et al.  Photooxidation of Water at α ‐ Fe2 O 3 Electrodes , 1978 .

[13]  Krishnan Rajeshwar,et al.  Hydrogen generation at irradiated oxide semiconductor–solution interfaces , 2007 .

[14]  Y. J. Ma,et al.  Low-temperature transport properties of individual SnO2 nanowires , 2004 .

[15]  Vincent Artero,et al.  Artificial Photosynthesis: From Molecular Catalysts for Light‐driven Water Splitting to Photoelectrochemical Cells , 2011, Photochemistry and photobiology.

[16]  A. Nozik Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. , 2001, Annual review of physical chemistry.

[17]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[18]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[19]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[20]  Brian P. Mehl,et al.  Characterizing Electron-Hole Plasma Dynamics at Different Points in Individual ZnO Rods , 2011 .

[21]  W. Lubitz,et al.  Solar water-splitting into H2 and O2: design principles of photosystem II and hydrogenases , 2008 .

[22]  J. Moser,et al.  Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal titania , 1985 .

[23]  W. Hess,et al.  Carrier dynamics in α‐Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity , 2006 .

[24]  Charles A Schmuttenmaer,et al.  Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. , 2006, The journal of physical chemistry. B.

[25]  Brian D. James,et al.  Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production , 2009 .

[26]  A. Bard,et al.  Heterogeneous Photocatalytic Preparation of Supported Catalysts. Photodeposition of Platinum on TiO2 Powder and Other Substrates , 1978 .

[27]  Charles A Schmuttenmaer,et al.  Exploring dynamics in the far-infrared with terahertz spectroscopy. , 2004, Chemical reviews.

[28]  T. Mallouk,et al.  Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. , 2009, Journal of the American Chemical Society.

[29]  A. Furube,et al.  Direct measurement of picosecond interfacial electron transfer from photoexcited TiO2 powder to an adsorbed molecule in the opaque suspension , 1997 .

[30]  Q. Shen,et al.  Separation of ultrafast photoexcited electron and hole dynamics in CdSe quantum dots adsorbed onto nanostructured TiO2 films , 2010 .

[31]  Bruce A. Parkinson,et al.  Recent developments in solar water-splitting photocatalysis , 2011 .

[32]  M. Wasielewski,et al.  Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. , 2009, Accounts of chemical research.

[33]  H. Tan,et al.  Shape-Controlled Synthesis of Single-Crystalline Fe2O3 Hollow Nanocrystals and Their Tunable Optical Properties , 2009 .

[34]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[35]  Yat Li,et al.  Effects of Hydrogen Treatment and Air Annealing on Ultrafast Charge Carrier Dynamics in ZnO Nanowires Under in Situ Photoelectrochemical Conditions , 2012 .

[36]  F. Willig,et al.  Escape dynamics of photoexcited electrons at catechol:TiO2(110) , 2006 .

[37]  Alexander J. Cowan,et al.  Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes , 2012 .

[38]  B. Dietzek,et al.  Analysis and characterization of coordination compounds by resonance Raman spectroscopy , 2012 .

[39]  J. Kennedy,et al.  PHOTOOXIDATION OF WATER AT α-IRON(III) OXIDE ELECTRODES , 1978 .

[40]  Tianquan Lian,et al.  Electron Transfer Dynamics in Semiconductor–Chromophore–Polyoxometalate Catalyst Photoanodes , 2013 .

[41]  Zhipan Zhang,et al.  Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis , 2013, Science.

[42]  Alexander J. Cowan,et al.  Mechanism of O2 Production from Water Splitting: Nature of Charge Carriers in Nitrogen Doped Nanocrystalline TiO2 Films and Factors Limiting O2 Production , 2011 .

[43]  Walter R. Duncan,et al.  Photoinduced electron dynamics at the chromophore-semiconductor interface: A time-domain ab initio perspective , 2009 .

[44]  R. Boudries,et al.  Analysis of solar hydrogen production in Algeria: Case of an electrolyzer-concentrating photovoltaic system , 2013 .

[45]  D. Nocera,et al.  Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. , 2009, Journal of the American Chemical Society.

[46]  Gang Wang,et al.  Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral electrolyte , 2012, Frontiers of Materials Science.

[47]  Matthew C. Beard,et al.  Carrier Localization and Cooling in Dye-Sensitized Nanocrystalline Titanium Dioxide , 2002 .

[48]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[49]  Yichuan Ling,et al.  Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation. , 2011, Nano letters.

[50]  Thomas Alured Faunce,et al.  Artificial Photosynthesis as a Frontier Technology for Energy Sustainability , 2013 .

[51]  Ralph L. House,et al.  Chemical approaches to artificial photosynthesis , 2012, Proceedings of the National Academy of Sciences.

[52]  Arthur J. Nozik,et al.  Photoelectrochemistry: Applications to Solar Energy Conversion , 1978 .

[53]  H. Onishi,et al.  Water- and Oxygen-Induced Decay Kinetics of Photogenerated Electrons in TiO2 and Pt/TiO2: A Time-Resolved Infrared Absorption Study , 2001 .

[54]  Ahmed Ennaoui,et al.  Concepts of inorganic solid-state nanostructured solar cells , 2011 .

[55]  Michael Grätzel,et al.  Photoelectrochemical Hydrogen Production , 2012 .

[56]  S. Xie,et al.  Time-resolved spectroscopic behavior of Fe2O3 and ZnFe2O4 nanocrystals. , 2004, The Journal of chemical physics.

[57]  J. Bisquert,et al.  Solar Fuels. Photocatalytic Hydrogen Generation , 2013 .

[58]  Tianquan Lian,et al.  Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. , 2012, Journal of the American Chemical Society.

[59]  Craig A. Grimes,et al.  Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis , 2011 .

[60]  T. Lian,et al.  Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi-type II quantum dot. , 2012, Journal of the American Chemical Society.

[61]  Jan C. Brauer,et al.  Synthesis and Characterization of High-Photoactivity Electrodeposited Cu2O Solar Absorber by Photoelectrochemistry and Ultrafast Spectroscopy , 2012 .

[62]  Dunwei Wang,et al.  In situ probe of photocarrier dynamics in water-splitting hematite (α-Fe2O3) electrodes , 2012 .

[63]  A. Furube,et al.  Femtosecond Visible-to-IR Spectroscopy of TiO2 Nanocrystalline Films: Elucidation of the Electron Mobility before Deep Trapping† , 2009 .

[64]  T. Rajh,et al.  A bioinspired construct that mimics the proton coupled electron transfer between P680*+ and the Tyr(Z)-His190 pair of photosystem II. , 2008, Journal of the American Chemical Society.

[65]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[66]  Matthew W Kanan,et al.  Cobalt-phosphate oxygen-evolving compound. , 2009, Chemical Society reviews.

[67]  A. Hagfeldt,et al.  Aqueous photoelectrochemistry of hematite nanorod array , 2002 .

[68]  Jonas Weissenrieder,et al.  Four-dimensional ultrafast electron microscopy of phase transitions , 2006, Proceedings of the National Academy of Sciences.

[69]  J. Ivy,et al.  Summary of Electrolytic Hydrogen Production: Milestone Completion Report , 2004 .

[70]  T. Sawada,et al.  Ultrafast Charge Transfer at TiO2/SCN- (aq) Interfaces Investigated by Femtosecond Transient Reflecting Grating Method , 1999 .

[71]  Shaohua Shen,et al.  A perspective on solar-driven water splitting with all-oxide hetero-nanostructures , 2011 .

[72]  Juan Bisquert,et al.  Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes , 2012 .

[73]  Michel Dupuis,et al.  Charge Transport in Metal Oxides: A Theoretical Study of Hematite α-Fe2O3 , 2005 .

[74]  C. Seidel,et al.  Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection , 2005 .

[75]  K. Domen,et al.  A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I− shuttle redox mediator , 2001 .

[76]  Daniel G Nocera,et al.  The artificial leaf. , 2012, Accounts of chemical research.

[77]  Colin G. Coates,et al.  The early picosecond photophysics of Ru(II) polypyridyl complexes: a tale of two timescales. , 2008, The journal of physical chemistry. A.

[78]  Charles A Schmuttenmaer,et al.  Exciton-like trap states limit electron mobility in TiO2 nanotubes. , 2010, Nature nanotechnology.

[79]  A. Furube,et al.  Electron–hole recombination in the bulk of a rutile TiO2 single crystal studied by sub-nanosecond transient absorption spectroscopy , 2008 .

[80]  J. Moser,et al.  Photoelectrochemical Studies on Nanocrystalline Hematite Films , 1994 .

[81]  Charles A. Schmuttenmaer,et al.  Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core− Shell−Shell Nanostructures , 2013 .

[82]  Thomas E Mallouk,et al.  Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. , 2013, Chemical Society reviews.

[83]  Albert Stolow,et al.  Femtosecond time-resolved photoelectron spectroscopy. , 2004, Chemical reviews.

[84]  Alexander J. Cowan,et al.  Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting , 2012, Proceedings of the National Academy of Sciences.

[85]  H. Arakawa,et al.  Trapping dynamics of electrons and holes in a nanocrystalline TiO2 film revealed by femtosecond visible/near-infrared transient absorption spectroscopy , 2006 .

[86]  Hee-eun Song,et al.  A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst , 2011 .

[87]  Victor S Batista,et al.  Light-driven water oxidation for solar fuels. , 2012, Coordination chemistry reviews.

[88]  F. Capasso,et al.  Terahertz Spectroscopy , 2010 .

[89]  A. J. Frank,et al.  Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells , 2003 .

[90]  C. Wolden,et al.  Activation of hematite nanorod arrays for photoelectrochemical water splitting. , 2011, ChemSusChem.

[91]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[92]  M. Grätzel,et al.  Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation , 2011 .

[93]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.

[94]  Michael Grätzel,et al.  Passivating surface states on water splitting hematite photoanodes with alumina overlayers , 2011 .

[95]  Excited states and optical absorption of small semiconducting clusters: Dopants, defects and charging , 2011 .

[96]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[97]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[98]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[99]  Tianquan Lian,et al.  Polyoxometalate water oxidation catalysts and the production of green fuel. , 2012, Chemical Society reviews.

[100]  V. Batista,et al.  Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. , 2003, Journal of the American Chemical Society.

[101]  Nerine J. Cherepy,et al.  Ultrafast Studies of Photoexcited Electron Dynamics in γ- and α-Fe2O3 Semiconductor Nanoparticles , 1998 .

[102]  C. Schmuttenmaer,et al.  Time-Resolved Terahertz Spectroscopy and Terahertz Emission Spectroscopy , 2017 .

[103]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[104]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[105]  U. Banin,et al.  Ultrafast photoinduced charge separation in metal-semiconductor nanohybrids. , 2012, ACS nano.

[106]  M. K. Brennaman,et al.  Chemical approaches to artificial photosynthesis. 2. , 2005, Inorganic chemistry.

[107]  Yat Li,et al.  Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties , 2012 .

[108]  T. Mallouk,et al.  Bidentate dicarboxylate capping groups and photosensitizers control the size of IrO2 nanoparticle catalysts for water oxidation. , 2007, The journal of physical chemistry. B.

[109]  M. Anpo,et al.  Direct observation of a picosecond charge separation process in photoexcited platinum-loaded TiO2 particles by femtosecond diffuse reflectance spectroscopy , 2001 .

[110]  Alexander J. Cowan,et al.  Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. , 2013, Physical chemistry chemical physics : PCCP.

[111]  T. Savenije,et al.  Charge carrier dynamics in TiO2 nanoparticles at various temperatures , 2008 .

[112]  J. Warman,et al.  Electronic processes in semiconductor materials studied by nanosecond time-resolved microwave conductivity—III. Al2O3, MgO and TiO2 powders , 1991 .

[113]  J. B. Baxter,et al.  Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells , 2011 .

[114]  A. Furube,et al.  Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. , 2007, Physical chemistry chemical physics : PCCP.

[115]  J. Schneider,et al.  Platinum(II) terpyridyl acetylide complexes on platinized TiO(2): toward the photogeneration of H(2) in aqueous media. , 2009, Inorganic chemistry.

[116]  G. Waychunas,et al.  Electron Small Polarons and Their Mobility in Iron (Oxyhydr)oxide Nanoparticles , 2012, Science.

[117]  Shane Ardo,et al.  Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. , 2009, Chemical Society reviews.

[118]  Yichuan Ling,et al.  Sn-doped hematite nanostructures for photoelectrochemical water splitting. , 2011, Nano letters.

[119]  R. Hill,et al.  Function of the Two Cytochrome Components in Chloroplasts: A Working Hypothesis , 1960, Nature.

[120]  Yongjing Lin,et al.  Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. , 2013, Accounts of chemical research.

[121]  Michael Grätzel,et al.  Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes. , 2011, ChemSusChem.

[122]  John B. Asbury,et al.  Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films , 2001 .

[123]  D. Klug,et al.  Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. , 2008, Journal of the American Chemical Society.

[124]  Nathan S. Lewis,et al.  Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems , 2012 .

[125]  Daniel G. Nocera,et al.  In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+ , 2008, Science.

[126]  A. Henglein,et al.  Flash photolysis observation of the absorption spectra of trapped positive holes and electrons in colloidal titanium dioxide , 1984 .

[127]  Uwe Bovensiepen,et al.  Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001) , 2004 .

[128]  Thomas W. Hamann,et al.  Splitting water with rust: hematite photoelectrochemistry. , 2012, Dalton transactions.

[129]  Joop Schoonman,et al.  Solar hydrogen production with nanostructured metal oxides , 2008 .

[130]  Timothy F. O'Connor,et al.  The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals. , 2012, ACS nano.

[131]  M. Anpo,et al.  The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation , 2003 .

[132]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[133]  Lars Gundlach,et al.  Femtosecond Kerr-gated wide-field fluorescence microscopy. , 2008, Optics letters.