The Extended Kalman Filter as a Parameter Estimator for Linear Systems

The extended Kalman filter is an approximate filter for nonlinear systems, based on first-order linearization. Its use for the joint parameter and state estimation problem for linear systems with unknown parameters is well known and widely spread. Here a convergence analysis of this method is given. It is shown that in general, the estimates may be biased or divergent and the causes for this are displayed. Some common special cases where convergence is guaranteed are also given. The analysis gives insight into the convergence mechanisms and it is shown that with a modification of the algorithm, global convergence results can be obtained for a general case. The scheme can then be interpreted as maximization of the likelihood function for the estimation problem, or as a recursive prediction error algorithm.

[1]  R. Kopp,et al.  LINEAR REGRESSION APPLIED TO SYSTEM IDENTIFICATION FOR ADAPTIVE CONTROL SYSTEMS , 1963 .

[2]  Henry Cox,et al.  On the estimation of state variables and parameters for noisy dynamic systems , 1964 .

[3]  J. Farison,et al.  Identification and control of linear discrete systems , 1967, IEEE Transactions on Automatic Control.

[4]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[5]  R. Mehra On the identification of variances and adaptive Kalman filtering , 1970 .

[6]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[7]  A. Sage,et al.  Maximum likelihood identification of time varying and random system parameters , 1972 .

[8]  P. Bélanger Estimation of noise covariance matrices for a linear time-varying stochastic process , 1972, at - Automatisierungstechnik.

[9]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .

[10]  L. Padmanabhan,et al.  Improved estimation algorithms using smoothing and relinearization , 1973 .

[11]  P. Bélanger Estimation of noise covariance matrices for a linear time-varying stochastic process , 1972, Autom..

[12]  R. Isermann,et al.  Comparison of six on-line identification and parameter estimation methods , 1974, Autom..

[13]  G. Saridis Comparison of six on-line identification algorithms , 1974, Autom..

[14]  K. Åström,et al.  Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model , 1974 .

[15]  Michael Athans,et al.  Dynamic stochastic control of freeway corridor systems, volume IV: estimation of traffic variables via extended Kalman filter methods , 1975 .

[16]  P. Caines Prediction error identification methods for stationary stochastic processes , 1976 .

[17]  A. R. Stubberud,et al.  Adaptive Minimum Variance Estimation in Discrete-Time Linear Systems* , 1976 .

[18]  Lennart Ljung,et al.  Analysis of recursive stochastic algorithms , 1977 .

[19]  E. Stear,et al.  The simultaneous on-line estimation of parameters and states in linear systems , 1976 .

[20]  Lennart Ljung,et al.  On Recursive Prediction Error Identification Algorithms , 1978 .

[21]  Lennart Ljung,et al.  A theoretical analysis of recursive identification methods , 1978, Autom..

[22]  L. Ljung Convergence analysis of parametric identification methods , 1978 .