Blended B-spline construction on unstructured quadrilateral and hexahedral meshes with optimal convergence rates in isogeometric analysis
暂无分享,去创建一个
Xin Li | Hendrik Speleers | Carla Manni | Thomas J. R. Hughes | John A. Evans | Deepesh Toshniwal | Xiaodong Wei | Yongjie Jessica Zhang | T. Hughes | Y. Zhang | D. Toshniwal | H. Speleers | Xin Li | C. Manni | Xiaodong Wei
[1] Jörg Peters,et al. A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.
[2] G. Sangalli,et al. Approximation properties of multi-patch $C^1$ isogeometric spaces , 2015 .
[3] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[4] Thomas J. R. Hughes,et al. Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..
[5] Jörg Peters,et al. Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..
[6] Thomas J. R. Hughes,et al. Truncated hierarchical tricubic spline construction on unstructured hexahedral meshes for isogeometric analysis applications , 2017, Comput. Math. Appl..
[7] Fehmi Cirak,et al. Isogeometric analysis using manifold-based smooth basis functions , 2016, ArXiv.
[8] Yongjie Jessica Zhang,et al. Geometric Modeling and Mesh Generation from Scanned Images , 2016 .
[9] W. Boehm. Inserting New Knots into B-spline Curves , 1980 .
[10] Nancy Wilkins-Diehr,et al. XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.
[11] F. Cirak,et al. A subdivision-based implementation of the hierarchical b-spline finite element method , 2013 .
[12] Les A. Piegl,et al. The NURBS book (2nd ed.) , 1997 .
[13] Thomas J. R. Hughes,et al. Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .
[14] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[15] T. Hughes,et al. Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations , 2017 .
[16] J. Dolbow,et al. Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .
[17] Thomas J. R. Hughes,et al. Truncated T-splines: Fundamentals and methods , 2017 .
[18] Hendrik Speleers,et al. Analysis-suitable spline spaces of arbitrary degree on unstructured quadrilateral meshes by , 2017 .
[19] Michael A. Scott,et al. Isogeometric spline forests , 2014 .
[20] Hector Gomez,et al. Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff-Love shells , 2017, Comput. Aided Des..
[21] Ulrich Reif,et al. A Refineable Space of Smooth Spline Surfaces of Arbitrary Topological Genus , 1997 .
[22] Ming Li,et al. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization , 2017, ArXiv.
[23] Michael A. Scott,et al. T-splines as a design-through-analysis technology , 2011 .
[24] K. Tang,et al. Rectified unstructured T-splines with dynamic weighted refinement for improvement in geometric consistency and approximation convergence , 2017 .
[25] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[26] Mario Kapl,et al. Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..
[27] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[28] Michel Bercovier,et al. Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes , 2014, 1412.1125.
[29] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[30] Wolfgang Böhm,et al. On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..
[31] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[32] Bernard Mourrain,et al. Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology , 2016, Comput. Aided Geom. Des..
[33] Ralph Roskies,et al. Bridges: a uniquely flexible HPC resource for new communities and data analytics , 2015, XSEDE.
[34] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[35] Giancarlo Sangalli,et al. Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..
[36] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[37] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[38] Giancarlo Sangalli,et al. Unstructured spline spaces for isogeometric analysis based on spline manifolds , 2015, Comput. Aided Geom. Des..
[39] John A. Evans,et al. Isogeometric boundary element analysis using unstructured T-splines , 2013 .
[40] Régis Duvigneau,et al. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..
[41] André Galligo,et al. Hermite type Spline spaces over rectangular meshes with complex topological structures , 2017 .
[42] Bert Jüttler,et al. Adaptively refined multi-patch B-splines with enhanced smoothness , 2016, Appl. Math. Comput..
[43] Bernd Hamann,et al. Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.
[44] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[45] T. Hughes,et al. Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .
[46] Thomas J. R. Hughes,et al. Truncated hierarchical Catmull–Clark subdivision with local refinement , 2015 .