A cyanobacterial circadian timing mechanism.

Cyanobacteria such as Synechococcus elongatus PCC 7942 exhibit 24-h rhythms of gene expression that are controlled by an endogenous circadian clock that is mechanistically distinct from those described for diverse eukaryotes. Genetic and biochemical experiments over the past decade have identified key components of the circadian oscillator, input pathways that synchronize the clock with the daily environment, and output pathways that relay temporal information to downstream genes. The mechanism of the cyanobacterial circadian clock that is emerging is based principally on the assembly and disassembly of a large complex at whose heart are the proteins KaiA, KaiB, and KaiC. Signal transduction pathways that feed into and out of the clock employ protein domains that are similar to those in two-component regulatory systems of bacteria.

[1]  Erik D Herzog,et al.  Circadian Rhythms: In the Loop at Last , 2003, Science.

[2]  S. Golden,et al.  Biochemical Properties of CikA, an Unusual Phytochrome-like Histidine Protein Kinase That Resets the Circadian Clock in Synechococcus elongatus PCC 7942* , 2003, Journal of Biological Chemistry.

[3]  Tetsuya Mori,et al.  Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC , 2003, The EMBO journal.

[4]  Takao Kondo,et al.  KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system , 2003, The EMBO journal.

[5]  J. Raven,et al.  Genomics and chloroplast evolution: what did cyanobacteria do for plants? , 2003, Genome Biology.

[6]  R. Guerrero,et al.  Isolation and Characterization of Cyanobacteria from Microbial Mats of the Ebro Delta, Spain , 2003, Current Microbiology.

[7]  Katsumi Imada,et al.  ATP‐induced hexameric ring structure of the cyanobacterial circadian clock protein KaiC , 2003, Genes to cells : devoted to molecular & cellular mechanisms.

[8]  Eviatar Nevo,et al.  Origin and evolution of circadian clock genes in prokaryotes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Golden,et al.  ldpA Encodes an Iron-Sulfur Protein Involved in Light-Dependent Modulation of the Circadian Period in the Cyanobacterium Synechococcuselongatus PCC 7942 , 2003, Journal of bacteriology.

[10]  Yuhong Yang,et al.  WHITE COLLAR-1, a Multifunctional NeurosporaProtein Involved in the Circadian Feedback Loops, Light Sensing, and Transcription Repression of wc-2* , 2003, The Journal of Biological Chemistry.

[11]  Michael W. Young,et al.  vrille, Pdp1, and dClock Form a Second Feedback Loop in the Drosophila Circadian Clock , 2003, Cell.

[12]  J. Raven,et al.  Genomes at the interface between bacteria and organelles. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[13]  Takao Kondo,et al.  Circadian Formation of Clock Protein Complexes by KaiA, KaiB, KaiC, and SasA in Cyanobacteria* , 2003, The Journal of Biological Chemistry.

[14]  Tetsuya Mori,et al.  Circadian clock protein KaiC forms ATP-dependent hexameric rings and binds DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Golden,et al.  Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: A potential clock input mechanism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Scherz,et al.  From chloroplasts to photosystems: in situ scanning force microscopy on intact thylakoid membranes , 2002, The EMBO journal.

[17]  Claude W. dePamphilis,et al.  The Chlamydomonas reinhardtii Plastid Chromosome , 2002, The Plant Cell Online.

[18]  D. Kahn,et al.  Molecular dynamics of the FixJ receiver domain: movement of the β4–α4 loop correlates with the in and out flip of Phe101 , 2002 .

[19]  Takao Kondo,et al.  KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Sabine Cornelsen,et al.  Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  O. Gorelova,et al.  Formation of Giant and Ultramicroscopic Forms of Nostoc muscorum CALU 304 during Cocultivation with Rauwolfia Tissues , 2002, Microbiology.

[22]  Y. Nakahira,et al.  Mutations in KaiA, a clock protein, extend the period of circadian rhythm in the cyanobacterium Synechococcus elongatus PCC 7942. , 2002, Microbiology.

[23]  A. Millar,et al.  The Circadian Clock That Controls Gene Expression in Arabidopsis Is Tissue Specific1 , 2002, Plant Physiology.

[24]  S. Golden,et al.  Sequence-specific resonance assignments of the N-terminal, 105-residue KaiC-interacting domain of SasA, a protein necessary for a robust circadian rhythm in Synechococcus elongatus. , 2002, Journal of biomolecular NMR.

[25]  D. Beer,et al.  Effect of Oxygen Concentration on Photosynthesis and Respiration in Two Hypersaline Microbial Mats , 2002, Microbial Ecology.

[26]  S. J. Beard,et al.  The sequence of the major gas vesicle protein, GvpA, influences the width and strength of halobacterial gas vesicles. , 2002, FEMS microbiology letters.

[27]  I. Oksanen,et al.  Lichen Guilds Share Related Cyanobacterial Symbionts , 2002, Science.

[28]  S. Golden,et al.  Roles for Sigma Factors in Global Circadian Regulation of the Cyanobacterial Genome , 2002, Journal of bacteriology.

[29]  K. Harada,et al.  Comparison of protein phosphatase inhibitory activity and apparent toxicity of microcystins and related compounds. , 2002, Toxicon : official journal of the International Society on Toxinology.

[30]  J. Armesto,et al.  Genetic Diversity of Nostoc Microsymbionts from Gunnera tinctoria Revealed by PCR-STRR Fingerprinting , 2002, Microbial Ecology.

[31]  S. Yamaguchi,et al.  Molecular machinery of the circadian clock in mammals , 2002, Cell and Tissue Research.

[32]  J. Kasting,et al.  Life and the Evolution of Earth's Atmosphere , 2002, Science.

[33]  A. Steele,et al.  Questioning the evidence for Earth's oldest fossils , 2002, Nature.

[34]  S. Chisholm,et al.  Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. , 2002, Trends in microbiology.

[35]  Albert Goldbeter,et al.  A model for the enhancement of fitness in cyanobacteria based on resonance of a circadian oscillator with the external light-dark cycle. , 2002, Journal of theoretical biology.

[36]  F. Garcia-Pichel,et al.  Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronemaexcentricum gen. nov., sp. nov. , 2002, Archives of Microbiology.

[37]  T. Cavalier-smith,et al.  Chloroplast Evolution: Secondary Symbiogenesis and Multiple Losses , 2002, Current Biology.

[38]  D. Bell-Pedersen,et al.  The Neurospora circadian clock: simple or complex? , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  P. Falkowski,et al.  Segregation of Nitrogen Fixation and Oxygenic Photosynthesis in the Marine Cyanobacterium Trichodesmium , 2001, Science.

[40]  P. Fromme,et al.  Structure of photosystem I. , 2001, Biochimica et biophysica acta.

[41]  H. Pakrasi,et al.  The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  R. Brown,et al.  Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase? , 2001, Plant physiology.

[43]  S. Golden,et al.  Letter to the Editor: Sequence-specific 1H, 13C and 15N resonance assignments of the N-terminal, 135-residue domain of KaiA, a clock protein from Synechococcus elongatus , 2001, Journal of biomolecular NMR.

[44]  S. Kay,et al.  Time zones: a comparative genetics of circadian clocks , 2001, Nature Reviews Genetics.

[45]  P. Lindblad,et al.  Genetic Diversity of Nostoc Symbionts Endophytically Associated with Two Bryophyte Species , 2001, Applied and Environmental Microbiology.

[46]  J. Barber,et al.  Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria , 2001, Nature.

[47]  E. Boekema,et al.  A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria , 2001, Nature.

[48]  C. Johnson,et al.  Circadian programming in cyanobacteria. , 2001, Seminars in cell & developmental biology.

[49]  M A Thomas,et al.  When three's not a crowd , 2001, Nature.

[50]  M. Go,et al.  Two KaiA‐binding domains of cyanobacterial circadian clock protein KaiC , 2001, FEBS letters.

[51]  M. Robb,et al.  The Microcystis cyanobacteria bloom in the Swan River--February 2000. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[52]  James W. Golden,et al.  PatS and Products of Nitrogen Fixation Control Heterocyst Pattern , 2001, Journal of bacteriology.

[53]  Petra Fromme,et al.  Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution , 2001, Nature.

[54]  D. Vaulot,et al.  Diel Expression of Cell Cycle-Related Genes in Synchronized Cultures of Prochlorococcus sp. Strain PCC 9511 , 2001, Journal of bacteriology.

[55]  J. W. Hastings Fifty Years of Fun , 2001, Journal of biological rhythms.

[56]  A. Muro-Pastor,et al.  Nitrogen Control in Cyanobacteria , 2001, Journal of bacteriology.

[57]  S. Golden,et al.  A New Circadian Class 2 Gene, opcA, Whose Product Is Important for Reductant Production at Night in Synechococcus elongatus PCC 7942 , 2000, Journal of bacteriology.

[58]  A. Rosenthal,et al.  The Structure and Gene Repertoire of an Ancient Red Algal Plastid Genome , 2000, Journal of Molecular Evolution.

[59]  A. Hall,et al.  Functional independence of circadian clocks that regulate plant gene expression , 2000, Current Biology.

[60]  S. Golden,et al.  CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock. , 2000, Science.

[61]  V. Miao,et al.  Genes controlling circadian rhythm are widely distributed in cyanobacteria. , 2000, FEMS microbiology letters.

[62]  D Gonze,et al.  Modeling the differential fitness of cyanobacterial strains whose circadian oscillators have different free-running periods: comparing the mutual inhibition and substrate depletion hypotheses. , 2000, Journal of theoretical biology.

[63]  Tetsuya Mori,et al.  Circadian clock‐protein expression in cyanobacteria: rhythms and phase setting , 2000, The EMBO journal.

[64]  O. Gorelova [Spatial integration of partners and heteromorphism of cyanobacterium Nostoc muscoum CALU 304 in mixed culture with Rauwolfia]. , 2000, Mikrobiologiia.

[65]  S. Golden,et al.  A KaiC-Interacting Sensory Histidine Kinase, SasA, Necessary to Sustain Robust Circadian Oscillation in Cyanobacteria , 2000, Cell.

[66]  T. Cavalier-smith,et al.  Membrane heredity and early chloroplast evolution. , 2000, Trends in plant science.

[67]  T. Kondo,et al.  Nucleotide binding and autophosphorylation of the clock protein KaiC as a circadian timing process of cyanobacteria. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A Hall,et al.  The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Hughes,et al.  Prokaryotes and phytochrome. The connection to chromophores and signaling , 1999, Plant physiology.

[70]  L. Pearl,et al.  Crystal structure and induction mechanism of AmiC–AmiR: a ligand‐regulated transcription antitermination complex , 1999, The EMBO journal.

[71]  C. Johnson,et al.  Different circadian oscillators control Ca(2+) fluxes and lhcb gene expression. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  E. Carpenter,et al.  Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. , 1999, Environmental microbiology.

[73]  W. Martin,et al.  Why have organelles retained genomes? , 1999, Trends in genetics : TIG.

[74]  K. Okada,et al.  Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts , 1999, Nature.

[75]  S. Golden,et al.  cpmA, a Gene Involved in an Output Pathway of the Cyanobacterial Circadian System , 1999, Journal of bacteriology.

[76]  T. Nishino,et al.  A thermophilic cyanobacterium Synechococcus elongatus has three different Class I prenyltransferase genes , 1999, Plant Molecular Biology.

[77]  T. Kondo,et al.  Physical interactions among circadian clock proteins KaiA, KaiB and KaiC in cyanobacteria , 1999, The EMBO journal.

[78]  J. Bartram,et al.  HUMAN HEALTH ASPECTS , 1999 .

[79]  Ingrid Chorus,et al.  Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. , 1999 .

[80]  J. Dunlap Molecular Bases for Circadian Clocks , 1999, Cell.

[81]  C. Johnson,et al.  A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[82]  S. Golden,et al.  The cyanobacterial circadian system: a clock apart. , 1998, Current opinion in microbiology.

[83]  H. Yoon,et al.  Heterocyst formation in Anabaena. , 1998, Current opinion in microbiology.

[84]  H. Paerl,et al.  Microbial Phototrophic, Heterotrophic, and Diazotrophic Activities Associated with Aggregates in the Permanent Ice Cover of Lake Bonney, Antarctica , 1998, Microbial Ecology.

[85]  H. Paerl,et al.  N2-Fixing Microbial Consortia Associated with the Ice Cover of Lake Bonney, Antarctica , 1998, Microbial Ecology.

[86]  C. Johnson,et al.  Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. , 1998, Science.

[87]  R. Herrmann,et al.  Gene transfer from organelles to the nucleus: how much, what happens, and Why? , 1998, Plant physiology.

[88]  M. Merrow,et al.  How temperature changes reset a circadian oscillator. , 1998, Science.

[89]  S. Golden,et al.  Resonating circadian clocks enhance fitness in cyanobacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[90]  C P McKay,et al.  Perennial Antarctic lake ice: an oasis for life in a polar desert. , 1998, Science.

[91]  Østensvik,et al.  Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria – a comparative study of bacterial bioassays , 1998, Journal of applied microbiology.

[92]  T. Sano,et al.  Two (Z)-dehydrobutyrine-containing microcystins from a hepatotoxic bloom of Oscillatoria agardhii from Soulseat Loch, Scotland. , 1998, Journal of natural products.

[93]  G. Muyzer,et al.  The phylogeny of unicellular, extremely halotolerant cyanobacteria , 1998, Archives of Microbiology.

[94]  T. Kondo,et al.  A Period-Extender Gene, pex, That Extends the Period of the Circadian Clock in the Cyanobacterium Synechococcus sp. Strain PCC 7942 , 1998, Journal of bacteriology.

[95]  W. Hess,et al.  Unique organization of the dnaA region from Prochlorococcus marinus CCMP1375, a marine cyanobacterium , 1998, Molecular and General Genetics MGG.

[96]  T. Kondo,et al.  Circadian rhythm of the cyanobacterium Synechocystis sp. strain PCC 6803 in the dark , 1997, Journal of bacteriology.

[97]  W. Carmichael,et al.  Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov , 1997, Applied and environmental microbiology.

[98]  Susan S. Golden,et al.  CYANOBACTERIAL CIRCADIAN RHYTHMS. , 1997, Annual review of plant physiology and plant molecular biology.

[99]  Y. Suzuki,et al.  Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[100]  J. Garcia-Gil,et al.  Structure and composition of freshwater microbial mats from a sulfur spring ("Font Pudosa", NE Spain). , 1997, Microbiologia.

[101]  S. Golden,et al.  Circadian Rhythms in Rapidly Dividing Cyanobacteria , 1997, Science.

[102]  W. Liesack,et al.  Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates , 1996, Archives of Microbiology.

[103]  B. Binder,et al.  Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Takao Kondo,et al.  Circadian expression of genes involved in the purine biosynthetic pathway of the cyanobacterium Synechococcus sp. strain PCC 7942 , 1996, Molecular microbiology.

[105]  K. Tanaka,et al.  A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. , 1996, The EMBO journal.

[106]  R. G. Sheath,et al.  Tundra stream macroalgae of North America: composition, distribution and physiological adaptations , 1996 .

[107]  H. Paerl Microscale physiological and ecological studies of aquatic cyanobacteria: Macroscale implications , 1996, Microscopy research and technique.

[108]  Joseph S. Davis,et al.  Biological and physical events involved in the origin, effects, and control of organic matter in solar saltworks , 1995 .

[109]  T. Kondo,et al.  Circadian expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803 , 1995, Journal of bacteriology.

[110]  S. Golden,et al.  Circadian orchestration of gene expression in cyanobacteria. , 1995, Genes & development.

[111]  J. Suzuki,et al.  A prokaryotic origin for light-dependent chlorophyll biosynthesis of plants. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Donald A. Bryant,et al.  The molecular biology of cyanobacteria , 1995, Photosynthesis Research.

[113]  M. Potts Desiccation tolerance of prokaryotes , 1994, Microbiological reviews.

[114]  S. Golden,et al.  Circadian clock mutants of cyanobacteria. , 1994, Science.

[115]  A. Grossman,et al.  Complementary chromatic adaptation: photoperception to gene regulation. , 1994, Seminars in cell biology.

[116]  S. Kay,et al.  Circadian clock- and phytochrome-regulated transcription is conferred by a 78 bp cis-acting domain of the Arabidopsis CAB2 promoter. , 1994, The Plant journal : for cell and molecular biology.

[117]  L. Sherman,et al.  Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142 , 1994, Journal of bacteriology.

[118]  Nagayama Masahiro,et al.  Cloning of a sensory-kinase-encoding gene that belongs to the two-component regulatory family from the cyanobacterium Synechococcus sp. PCC7942 , 1993 .

[119]  K. Kloppstech,et al.  The Circadian Oscillator Coordinates the Synthesis of Apoproteins and Their Pigments during Chloroplast Development , 1993, Plant physiology.

[120]  C. Strayer,et al.  Circadian rhythms in prokaryotes: luciferase as a reporter of circadian gene expression in cyanobacteria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[121]  J. Schopf,et al.  Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life , 1993, Science.

[122]  K. Tanaka,et al.  Multiple rpoD-related genes of cyanobacteria. , 1992, Bioscience, biotechnology, and biochemistry.

[123]  C. Field,et al.  Evidence of Multiple Circadian Oscillators in Bean Plants , 1992, Journal of biological rhythms.

[124]  A. Tanaka,et al.  Synthesis of HS-toxin A Aglycone , 1992 .

[125]  R. Haselkorn,et al.  Multiple evolutionary origins of prochlorophytes, the chlorophyllb-containing prokaryotes , 1992, Nature.

[126]  Tan-Chi Huang,et al.  Circadian Rhythm in Amino Acid Uptake by Synechococcus RF-1. , 1991, Plant physiology.

[127]  J. C. Woolum A Re-Examination of the Role of the Nucleus in Generating the Circadian Rhythm in Acetabularia , 1991, Journal of biological rhythms.

[128]  S. Kay,et al.  Circadian Control of cab Gene Transcription and mRNA Accumulation in Arabidopsis. , 1991, The Plant cell.

[129]  J. Houmard,et al.  Gas vesicle synthesis in the cyanobacterium Pseudanabaena sp.: occurrence of a single photoregulated gene , 1991, Molecular microbiology.

[130]  Tan-Chi Huang,et al.  Circadian Rhythm of the Prokaryote Synechococcus sp. RF-1. , 1990, Plant physiology.

[131]  W. Carmichael,et al.  Diagnostic and Clinically Important Aspects of Cyanobacterial (Blue-Green Algae) Toxicoses , 1989, Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc.

[132]  A. Knoll,et al.  Microfossils from silicified stromatolitic carbonates of the Upper Proterozoic Limestone-Dolomite 'Series', central East Greenland , 1989, Geological Magazine.

[133]  D. Vernon,et al.  The biosynthesis of the chromophore of phycocyanin. Pathway of reduction of biliverdin to phycocyanobilin. , 1989, The Biochemical journal.

[134]  G. Guglielmi,et al.  Occurrence and distribution of gas vesicle genes among cyanobacteria , 1989, Journal of bacteriology.

[135]  B. Sweeney,et al.  A CIRCADIAN RHYTHM IN CELL DIVISION IN A PROKARYOTE, THE CYANOBACTERIUM SYNECHOCOCCUS WH7803 1 , 1989 .

[136]  S. Golden,et al.  psbA genes indicate common ancestry of prochlorophytes and chloroplasts , 1989, Nature.

[137]  N. Hoffman,et al.  A light‐entrained circadian clock controls transcription of several plant genes. , 1988, The EMBO journal.

[138]  J. Schopf,et al.  Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. , 1987, Science.

[139]  F. Kippert Endocytobiotic Coordination, Intracellular Calcium Signaling, and the Origin of Endogenous Rhythms , 1987, Annals of the New York Academy of Sciences.

[140]  Tan-Chi Huang,et al.  Dinitrogen-fixing endogenous rhythm in Synechococcus RF-1 , 1986 .

[141]  A. Mitsui,et al.  Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically , 1986, Nature.

[142]  L. Stal,et al.  Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. grown under alternating light-dark cycles , 1985, Archives of Microbiology.

[143]  L. N. Edmunds Chronobiology at the cellular and molecular levels: models and mechanisms for circadian timekeeping. , 1983, The American journal of anatomy.

[144]  G. Cox,et al.  Ultrastructure of a cave-wall cyanophyte-Gloeocapsa NS4 , 1981, Archives of Microbiology.

[145]  B. Parker,et al.  Algae in cryoconite holes on Canada Glacier in Southern Victorialand, Antarctica , 1981 .

[146]  T. D. Brock Halophilic-blue-green algae , 1976, Archives of Microbiology.

[147]  H. Schweiger,et al.  Circadian rhythm of oxygen evolution in cell fragments of Acetabularia mediterranea. , 1975, Experimental cell research.

[148]  J. W. Hastings,et al.  Circadian rhythms: mechanism of luciferase activity changes in Gonyaulax. , 1972, The Biological bulletin.

[149]  S. Bonotto,et al.  [Circadian rhythm in the inulin content of "Acetabularia mediterranea" chloroplasts]. , 1968, Archives internationales de physiologie et de biochimie.

[150]  B. Sweeney,et al.  The Circadian Rhythm in Photosynthesis in Acetabularia in the Presence of Actinomycin D, Puromycin, and Chloramphenicol , 1967, The Journal of general physiology.

[151]  Wayne W. Carmichael,et al.  Inhibition of protein phosphatases by microcystis and nodularin associated with hepatotoxicity , 2005, Journal of Cancer Research and Clinical Oncology.

[152]  W. Carmichael,et al.  Immuno-gold localization of hepatotoxins in cyanobacterial cells , 2004, Archives of Microbiology.

[153]  E. Friedmann,et al.  Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica , 2004, Microbial Ecology.

[154]  J. Waterbury,et al.  A cyanobacterium which lacks thylakoids , 2004, Archives of Microbiology.

[155]  M. Potts,et al.  Life and death of dried prokaryotes. , 2002, Research in microbiology.

[156]  D. Relman,et al.  Molecular identification of cyanobacteria associated with stromatolites from distinct geographical locations. , 2002, Astrobiology.

[157]  M. Ikeuchi,et al.  Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[158]  J. Meeks,et al.  Establishment of a functional symbiosis between the cyanobacterium Nostoc punctiforme and the bryophyte Anthoceros punctatus requires genes involved in nitrogen control and initiation of heterocyst differentiation. , 2002, Microbiology.

[159]  C. Frank Microcystin‐producing cyanobacteria in recreational waters in southwestern Germany , 2002, Environmental toxicology.

[160]  K. Becker,et al.  Microcystins in natural blooms and laboratory cultured Microcystis aeruginosa from Laguna de Bay, Philippines. , 2002, Systematic and applied microbiology.

[161]  D. Kahn,et al.  Molecular dynamics of the FixJ receiver domain: movement of the beta4-alpha4 loop correlates with the in and out flip of Phe101. , 2002, Protein science : a publication of the Protein Society.

[162]  W. Miller,et al.  The Chlamydomonas reinhardtii Plastid Chromosome: Islands of Genes in a Sea of Repeats , 2002 .

[163]  S. Kay,et al.  Molecular bases of circadian rhythms. , 2001, Annual review of cell and developmental biology.

[164]  Y. Nakamura,et al.  Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. , 2001, DNA research : an international journal for rapid publication of reports on genes and genomes.

[165]  G. Garrity Bergey's Manual of systematic bacteriology , 2001 .

[166]  Detlef D. Leipe,et al.  The bacterial replicative helicase DnaB evolved from a RecA duplication. , 2000, Genome research.

[167]  J. Shelton,et al.  Application of bioluminescence to the study of circadian rhythms in cyanobacteria. , 2000, Methods in enzymology.

[168]  R. Nandi,et al.  Microbial production of hydrogen: an overview. , 1998, Critical reviews in microbiology.

[169]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[170]  J. Palmer,et al.  The origin of plastids and their spread via secondary symbiosis , 1997 .

[171]  C. Wolk,et al.  Heterocyst formation. , 1996, Annual review of genetics.

[172]  M. Mittag,et al.  [Cellular mechanisms of circadian clocks]. , 1995, Wiener medizinische Wochenschrift.

[173]  M. Surette,et al.  Two-component signal transduction systems : structure-function relationships and mechanisms of catalysis , 1995 .

[174]  T. Meyer Evolution of photosynthetic reaction centers and light harvesting chlorophyll proteins. , 1994, Bio Systems.

[175]  M. Watanabe,et al.  Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method. , 1994, Toxicon : official journal of the International Society on Toxinology.

[176]  T. Mizuno,et al.  Cloning of a sensory-kinase-encoding gene that belongs to the two-component regulatory family from the cyanobacterium Synechococcus sp. PCC7942. , 1993, Gene.

[177]  M. Shirai,et al.  Isolation of two toxic heptapeptide microcystins from an axenic strain of Microcystis aeruginosa, K-139. , 1991, Toxicon : official journal of the International Society on Toxinology.

[178]  C. McKay,et al.  Preliminary report on radiocarbon dating of cryptoendolithic microorganisms. , 1988, Polarforschung.

[179]  J. Houmard,et al.  Advances in Cyanobacterial molecular genetics. , 1987 .

[180]  H. Schweiger,et al.  Circadian rhythms in unicellular organisms: an endeavor to explain the molecular mechanism. , 1977, International review of cytology.

[181]  B. Sweeney A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes. , 1974, International journal of chronobiology.

[182]  Sweeney Bm A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes. , 1974 .

[183]  S. Bonotto,et al.  Rhythms in acetabularia. , 1969, Rassegna di neurologia vegetativa.