Physiologically Structured Population Dynamics : A Modeling Perspective

[1]  O. Diekmann,et al.  On the formulation and analysis of general deterministic structured population models II. Nonlinear theory , 2000 .

[2]  M Gyllenberg,et al.  Ontogenetic scaling of foraging rates and the dynamics of a size-structured consumer-resource model. , 1998, Theoretical population biology.

[3]  J. Tyson,et al.  Global asymptotic stability of the size distribution in probabilistic models of the cell cycle , 1985, Journal of mathematical biology.

[4]  A. M. de Roos,et al.  The role of physiologically structured population models within a general individual-based modelling perspective , 1992 .

[5]  Gennady Bocharov,et al.  Structured Population Models, Conservation Laws, and Delay Equations , 2000 .

[6]  Bob W. Kooi,et al.  The dynamics of a tri-trophic food chain with two-component populations from a biochemical perspective , 2002 .

[7]  W. Donachie,et al.  Relationship between Cell Size and Time of Initiation of DNA Replication , 1968, Nature.

[8]  O Angulo,et al.  Numerical integration of autonomous and non-autonomous non-linear size-structured population models. , 2002, Mathematical biosciences.

[9]  F A Milner,et al.  Rapidly converging numerical algorithms for models of population dynamics , 1992, Journal of mathematical biology.

[10]  Thomas G. Hallam,et al.  Modelling Individuals Employing an Integrated Energy Response: Application to Daphnia , 1990 .

[11]  J. Cushing An introduction to structured population dynamics , 1987 .

[12]  James C. Frauenthal,et al.  Analysis of Age-Structure Models , 1986 .

[13]  O. Diekmann,et al.  Exact finite dimensional representations of models for physiologically structured populations , 1989 .

[14]  M Gyllenberg,et al.  Steady-state analysis of structured population models. , 2003, Theoretical population biology.

[15]  O. Diekmann,et al.  The Dynamics of Physiologically Structured Populations , 1986 .

[16]  Shripad Tuljapurkar,et al.  Stochastic Matrix Models , 1997 .

[17]  A. G. Fredrickson,et al.  A new set of population balance equations for microbial and cell cultures , 2002 .

[18]  R. Nisbet,et al.  Survival and production in variable resource environments , 2000, Bulletin of mathematical biology.

[19]  Wilfried Gabriel,et al.  Cannibalism as a life boat mechanism , 1988 .

[20]  J. Cushing Nonlinear Matrix Equations and Population Dynamics , 1997 .

[21]  Marek Kimmel,et al.  Comparison of Approaches to Modeling of Cell Population Dynamics , 1993, SIAM J. Appl. Math..

[22]  B W Kooi,et al.  Discrete event versus continuous approach to reproduction in structured population dynamics. , 1999, Theoretical population biology.

[23]  Bob W. Kooi,et al.  DISCRETE AND CONTINUOUS TIME POPULATION MODELS, A COMPARISON CONCERNING PROLIFERATION BY FISSION , 1995 .

[24]  A. Lasota,et al.  Globally asymptotic properties of proliferating cell populations , 1984, Journal of mathematical biology.

[25]  David Claessen,et al.  Dwarfs and Giants: Cannibalism and Competition in Size‐Structured Populations , 2000, The American Naturalist.

[26]  Azmy S. Ackleh,et al.  A monotone approximation for a nonlinear nonautonomous size-structured population model , 2000, Appl. Math. Comput..

[27]  Tanya Kostova,et al.  An explicit third‐order numerical method for size‐structured population equations , 2003 .

[28]  M. Kimmel,et al.  Asymptotic behavior of a nonlinear functional-integral equation of cell kinetics with unequal division , 1989, Journal of mathematical biology.

[29]  R. Nisbet,et al.  Delay-Differential Equations for Structured Populations , 1997 .

[30]  D. DeAngelis,et al.  Individual-Based Models and Approaches in Ecology , 1992 .

[31]  B W Kooi,et al.  Iteroparous reproduction strategies and population dynamics , 2001, Bulletin of mathematical biology.

[32]  M. Droop SOME THOUGHTS ON NUTRIENT LIMITATION IN ALGAE 1 , 1973 .

[33]  J Tyrcha Age-dependent cell cycle models. , 2001, Journal of theoretical biology.

[34]  Hal Caswell,et al.  Matrix Methods for Population Analysis , 1997 .

[35]  Mats Gyllenberg,et al.  Continuous versus discrete single species population models with adjustable reproductive strategies , 1997 .

[36]  M Gyllenberg,et al.  On fitness in structured metapopulations , 2001, Journal of mathematical biology.

[37]  A. De Roos,et al.  Numerical methods for structured population models: The Escalator Boxcar Train , 1988 .

[38]  Bob W. Kooi,et al.  MODELLING THE GROWTH OF AN OLIGOCHAETE ON ACTIVATED SLUDGE , 1993 .

[39]  Christa H. Ratsak Effects of Nais elinguis on the performance of an activated sludge plant , 2001 .

[40]  D. Sulsky,et al.  Numerical solution of structured population models , 1993, Journal of mathematical biology.

[41]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[42]  Mark Kot,et al.  Elements of Mathematical Ecology: Frontmatter , 2001 .

[43]  Doraiswami Ramkrishna,et al.  Population Balances: Theory and Applications to Particulate Systems in Engineering , 2000 .

[44]  L. Murphy A nonlinear growth mechanism in size structured population dynamics , 1983 .

[45]  P. Holgate,et al.  Matrix Population Models. , 1990 .

[46]  Ulf Dieckmann,et al.  Ontogenetic niche shifts and evolutionary branching in size-structured populations , 2002 .

[47]  G. Webb Theory of Nonlinear Age-Dependent Population Dynamics , 1985 .

[48]  Odo Diekmann,et al.  Simple mathematical models for cannibalism: A critique and a new approach , 1986 .