Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2

[1]  Yun Jung Lee,et al.  Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[2]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[3]  Kazuhisa Tamura,et al.  Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. , 2010, Journal of the American Chemical Society.

[4]  Jie Xiao,et al.  Influence of Manganese Content on the Performance of LiNi0.9−yMnyCo0.1O2 (0.45 ≤ y ≤ 0.60) as a Cathode Material for Li-Ion Batteries† , 2010 .

[5]  Yang-Kook Sun,et al.  Structural, Electrochemical, and Thermal Aspects of Li [ ( Ni0.5Mn0.5 ) 1 − x Co x ] O2 ( 0 ≤ x ≤ 0.2 ) for High-Voltage Application of Lithium-Ion Secondary Batteries , 2008 .

[6]  Seung‐Taek Myung,et al.  Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries , 2005 .

[7]  S. Seki,et al.  Effect of binder polymer structures used in composite cathodes on interfacial charge transfer processes in lithium polymer batteries , 2004 .

[8]  Robert Kostecki,et al.  Local-probe studies of degradation of composite LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathodes in high-power lithium-ion cells , 2004 .

[9]  C. Delmas,et al.  Effects of Manganese Substitution for Nickel on the Structural and Electrochemical Properties of LiNiO2 , 2003 .

[10]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[11]  D. Aurbach,et al.  The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS , 2001 .

[12]  P. Biensan,et al.  Synthesis and Characterization of New LiNi1 − y Mg y O 2 Positive Electrode Materials for Lithium‐Ion Batteries , 2000 .

[13]  P. Novák,et al.  Characterization of Layered Lithium Nickel Manganese Oxides Synthesized by a Novel Oxidative Coprecipitation Method and Their Electrochemical Performance as Lithium Insertion Electrode Materials , 1998 .

[14]  M. Ichimura,et al.  Characterization and cathode performance of Li1 − xNi1 + xO2 prepared with the excess lithium method , 1995 .

[15]  Tsutomu Ohzuku,et al.  Why transition metal (di)oxides are the most attractive materials for batteries , 1994 .

[16]  J. Dahn,et al.  In situ x-ray diffraction and electrochemical studies of Li1−xNiO2 , 1993 .

[17]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[18]  Jeff Dahn,et al.  Rechargeable LiNiO2 / Carbon Cells , 1991 .

[19]  D. Aurbach The Electrochemical Behavior of Lithium Salt Solutions of γ‐Butyrolactone with Noble Metal Electrodes , 1989 .

[20]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[21]  Seung‐Taek Myung,et al.  Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer , 2014 .

[22]  A. Manthiram,et al.  Chemical synthesis and properties of Li1−δ−xNi1+δO2 and Li[Ni2]O4 , 1992 .