Quasi static mechanical study of vacuum bag infused bouligand inspired composites

[1]  F. Scarpa,et al.  Identifying optimal rotating pitch angles in composites with Bouligand structure , 2021 .

[2]  S. Pinho,et al.  Herringbone-Bouligand CFRP structures: A new tailorable damage-tolerant solution for damage containment and reduced delaminations , 2020 .

[3]  T. Tay,et al.  Damage progression and failure of single-lap thin-ply laminated composite bolted joints under quasi-static loading , 2020 .

[4]  S. Pinho,et al.  Ultra-thin-ply CFRP Bouligand bio-inspired structures with enhanced load-bearing capacity, delayed catastrophic failure and high energy dissipation capability , 2020 .

[5]  H. P. Lee,et al.  Bio-Inspired Laminates of Different Material Systems , 2020 .

[6]  V. Tan,et al.  Improving laminates through non-uniform inter-ply angles , 2019 .

[7]  S. Pinho,et al.  Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage , 2019, Composites Science and Technology.

[8]  H. P. Lee,et al.  On the improved ballistic performance of bio-inspired composites , 2019, Composites Part A: Applied Science and Manufacturing.

[9]  P. Zavattieri,et al.  Crack twisting and toughening strategies in Bouligand architectures , 2018, International Journal of Solids and Structures.

[10]  H. P. Lee,et al.  Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates , 2018, Composites Science and Technology.

[11]  V. Tan,et al.  Failure mechanisms in bioinspired helicoidal laminates , 2018 .

[12]  B. An,et al.  Analyzing variation in ILSS of fiber reinforced polymer laminates with respect to pressure variation in autoclave , 2017 .

[13]  P. Zavattieri,et al.  Twisting cracks in Bouligand structures. , 2017, Journal of the mechanical behavior of biomedical materials.

[14]  M. Meo,et al.  Damage tolerance of bio-inspired helicoidal composites under low velocity impact , 2017 .

[15]  V. Tan,et al.  Crustacean-inspired helicoidal laminates , 2016 .

[16]  P. Zavattieri,et al.  A Sinusoidally Architected Helicoidal Biocomposite , 2016, Advanced materials.

[17]  Gennaro Scarselli,et al.  Bioinspired twisted composites based on Bouligand structures , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Steven A Herrera,et al.  Bio-inspired impact-resistant composites. , 2014, Acta biomaterialia.

[19]  A. Nettles Some Examples of the Relations Between Processing and Damage Tolerance , 2012 .

[20]  Liang Cheng,et al.  Mechanical behavior of bio-inspired laminated composites , 2011 .

[21]  Bankim Chandra Ray,et al.  Environmental stability of GFRP laminated composites: an emphasis on mechanical behaviour , 2010 .

[22]  Liyun Wang,et al.  Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior , 2008 .

[23]  K. Ravi-Chandar,et al.  Helicoidal Composites , 2006 .

[24]  R. L. Caldwell,et al.  Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus , 2005, Journal of Experimental Biology.

[25]  Y Bouligand,et al.  Twisted fibrous arrangements in biological materials and cholesteric mesophases. , 1972, Tissue & cell.