Constructing a new chaotic system based on the S̆ilnikov criterion

Abstract Based on the Silnikov criterion, a simple quadratic chaotic system is constructed, which has a single equilibrium point. The formation mechanism shows that this chaotic system has Smale horseshoes (homoclinic chaos), and numerical simulation demonstrates that there is a route to chaos through period-doubling bifurcations. In particular, the method of finding chaotic systems can be used to construct rather arbitrary chaotic attractors of even number of scrolls and arbitrary odd number of scrolls.

[1]  R. F. Williams,et al.  The structure of Lorenz attractors , 1979 .

[2]  Guanrong Chen,et al.  Bifurcation Analysis of Chen's equation , 2000, Int. J. Bifurc. Chaos.

[3]  Guanrong Chen,et al.  A New Chaotic System and its Generation , 2003, Int. J. Bifurc. Chaos.

[4]  Julien Clinton Sprott,et al.  A new class of chaotic circuit , 2000 .

[5]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[6]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[7]  Guanrong Chen,et al.  The compound structure of a new chaotic attractor , 2002 .

[8]  P. Holmes,et al.  Homoclinic Orbits, Subharmonics and Global Bifurcations in Forced Oscillations , 1981 .

[9]  GUANRONG CHEN,et al.  Can a Three-Dimensional Smooth Autonomous Quadratic Chaotic System Generate a Single Four-scroll Attractor? , 2004, Int. J. Bifurc. Chaos.

[10]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[11]  Guanrong Chen,et al.  On a Generalized Lorenz Canonical Form of Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[12]  C. P. Silva,et al.  Shil'nikov's theorem-a tutorial , 1993 .

[13]  Jinhu Lu,et al.  Chaos synchronization between linearly coupled chaotic systems , 2002 .

[14]  Daniel D. Joseph,et al.  Nonlinear dynamics and turbulence , 1983 .

[15]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[16]  Julien Clinton Sprott,et al.  Simple chaotic systems and circuits , 2000 .

[17]  Zhang Suo-chun,et al.  Controlling uncertain Lü system using backstepping design , 2003 .

[18]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[19]  James A. Yorke,et al.  A Chaos Lemma , 2001, The American mathematical monthly.

[20]  Guanrong Chen,et al.  Chaotification via Feedback: The Discrete Case , 2003 .

[21]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[22]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[23]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.

[24]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.