Exoplanet Biosignatures: Understanding Oxygen as a Biosignature in the Context of Its Environment

Abstract We describe how environmental context can help determine whether oxygen (O2) detected in extrasolar planetary observations is more likely to have a biological source. Here we provide an in-depth, interdisciplinary example of O2 biosignature identification and observation, which serves as the prototype for the development of a general framework for biosignature assessment. Photosynthetically generated O2 is a potentially strong biosignature, and at high abundance, it was originally thought to be an unambiguous indicator for life. However, as a biosignature, O2 faces two major challenges: (1) it was only present at high abundance for a relatively short period of Earth's history and (2) we now know of several potential planetary mechanisms that can generate abundant O2 without life being present. Consequently, our ability to interpret both the presence and absence of O2 in an exoplanetary spectrum relies on understanding the environmental context. Here we examine the coevolution of life with the early Earth's environment to identify how the interplay of sources and sinks may have suppressed O2 release into the atmosphere for several billion years, producing a false negative for biologically generated O2. These studies suggest that planetary characteristics that may enhance false negatives should be considered when selecting targets for biosignature searches. We review the most recent knowledge of false positives for O2, planetary processes that may generate abundant atmospheric O2 without a biosphere. We provide examples of how future photometric, spectroscopic, and time-dependent observations of O2 and other aspects of the planetary environment can be used to rule out false positives and thereby increase our confidence that any observed O2 is indeed a biosignature. These insights will guide and inform the development of future exoplanet characterization missions. Key Words: Biosignatures—Oxygenic photosynthesis—Exoplanets—Planetary atmospheres. Astrobiology 18, 630–662.

[1]  Tom Brown,et al.  Science drivers and requirements for an Advanced Technology Large Aperture Space Telescope (ATLAST): implications for technology development and synergies with other future facilities , 2010, Astronomical Telescopes + Instrumentation.

[2]  Giovanna Tinetti,et al.  Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. , 2007, Astrobiology.

[3]  J. Kasting,et al.  ABIOTIC O2 LEVELS ON PLANETS AROUND F, G, K, AND M STARS: POSSIBLE FALSE POSITIVES FOR LIFE? , 2015, 1509.07863.

[4]  Ruth Titz,et al.  The Response of Atmospheric Chemistry on Earthlike Planets around F, G, and K stars to Small Variations in Orbital Distance , 2006, astro-ph/0610460.

[5]  Keita Yamada,et al.  Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era , 2006, Nature.

[6]  T. M. Harrison,et al.  Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons , 2015 .

[7]  Victoria Meadows,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[8]  L. Kaltenegger,et al.  EFFECT OF UV RADIATION ON THE SPECTRAL FINGERPRINTS OF EARTH-LIKE PLANETS ORBITING M STARS , 2015, 1506.07202.

[9]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[10]  G. T. Fraser,et al.  Investigation of the collision‐induced absorption by O2 near 6.4 μm in pure O2 and O2/N2 mixtures , 2000 .

[11]  D. Hunten The Escape of Light Gases from Planetary Atmospheres , 1973 .

[12]  C. Pilcher,et al.  Biosignatures of early earths. , 2002, Astrobiology.

[13]  Planets Formed in Habitable Zones of M Dwarf Stars Probably Are Deficient in Volatiles , 2007, astro-ph/0703576.

[14]  Carl Ekdahl,et al.  Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii , 1976 .

[15]  J. Kasting,et al.  Earth history. The rise of atmospheric oxygen. , 2001, Science.

[16]  Victoria Meadows,et al.  THE EFFECTS OF REFRACTION ON TRANSIT TRANSMISSION SPECTROSCOPY: APPLICATION TO EARTH-LIKE EXOPLANETS , 2014, 1407.3265.

[17]  T. Cardona Reconstructing the Origin of Oxygenic Photosynthesis: Do Assembly and Photoactivation Recapitulate Evolution? , 2016, Front. Plant Sci..

[18]  Pierre Baudoz,et al.  EPICS: the exoplanet imager for the E-ELT , 2008, Astronomical Telescopes + Instrumentation.

[19]  Tyler D. Robinson,et al.  DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT , 2010, 1008.3864.

[20]  A. Bekker,et al.  Dating the rise of atmospheric oxygen , 2004, Nature.

[21]  J F Nunn,et al.  Evolution of the atmosphere. , 1998, Proceedings of the Geologists' Association. Geologists' Association.

[22]  Pierre-Olivier Lagage,et al.  METIS: the mid-infrared E-ELT imager and spectrograph , 2008, Astronomical Telescopes + Instrumentation.

[23]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[24]  José Adrián Rojas-Dosal [Technology development]. , 2005, Cirugia y cirujanos.

[25]  James F. Kasting,et al.  The Rise of Atmospheric Oxygen , 2001, Science.

[26]  Martin G. Cohen,et al.  Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. , 2003, Astrobiology.

[27]  Edward W. Schwieterman,et al.  The Habitability of Proxima Centauri b: Environmental States and Observational Discriminants , 2016, Astrobiology.

[28]  Tyler D. Robinson,et al.  VIEWS FROM EPOXI: COLORS IN OUR SOLAR SYSTEM AS AN ANALOG FOR EXTRASOLAR PLANETS , 2010 .

[29]  Mark Clampin,et al.  Technology development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a candidate large UV-Optical-Infrared (LUVOIR) surveyor , 2015, SPIE Optical Engineering + Applications.

[30]  W. J. Lafferty,et al.  Infrared collision-induced absorption by N(2) near 4.3 μm for atmospheric applications: measurements and empirical modeling. , 1996, Applied optics.

[31]  J. Kasting,et al.  Synthetic spectra of simulated terrestrial atmospheres containing possible biomarker gases. , 2000, Icarus.

[32]  J. Seewald,et al.  Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions , 2006 .

[33]  James E. Lovelock,et al.  Life detection by atmospheric analysis , 1967 .

[34]  David P. Fleming,et al.  The Pale Green Dot: A Method to Characterize Proxima Centauri b Using Exo-Aurorae , 2016, 1609.09075.

[35]  J. Olson Precambrian Evolution of Photosynthetic and Respiratory Organisms , 1978 .

[36]  Tyler D. Robinson,et al.  Characterizing Rocky and Gaseous Exoplanets with 2 m Class Space-based Coronagraphs , 2015, 1507.00777.

[37]  Ryan Thalman,et al.  Temperature dependent absorption cross-sections of O2-O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. , 2013, Physical chemistry chemical physics : PCCP.

[38]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[39]  Matthew S. Johnson,et al.  Geological sulfur isotopes indicate elevated OCS in the Archean atmosphere, solving faint young sun paradox , 2009, Proceedings of the National Academy of Sciences.

[40]  J. Lovelock,et al.  Thermodynamics and the recognition of alien biospheres , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[42]  Susan L. Brantley,et al.  Neoarchean paleoweathering of tonalite and metabasalt: Implications for reconstructions of 2.69Ga early terrestrial ecosystems and paleoatmospheric chemistry , 2011 .

[43]  R. Wordsworth,et al.  Atmospheric nitrogen evolution on Earth and Venus , 2016, 1605.07718.

[44]  J. Kasting What caused the rise of atmospheric O2 , 2013 .

[45]  M. Osorio,et al.  Earth’s transmission spectrum from lunar eclipse observations , 2009, Nature.

[46]  Sara Seager,et al.  Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission. , 2011, Astrobiology.

[47]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[48]  Donovan H. Parks,et al.  On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria , 2017, Science.

[49]  D. Canfield,et al.  Atmospheric oxygenation three billion years ago , 2013, Nature.

[50]  Stephanie L. Olson,et al.  Limited role for methane in the mid-Proterozoic greenhouse , 2016, Proceedings of the National Academy of Sciences.

[51]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[52]  Victoria S. Meadows,et al.  Modelling the Diversity of Extrasolar Terrestrial Planets , 2005, Proceedings of the International Astronomical Union.

[53]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[54]  James F Kasting,et al.  Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars , 2013, Proceedings of the National Academy of Sciences.

[55]  Stephen R. Kane,et al.  ON THE FREQUENCY OF POTENTIAL VENUS ANALOGS FROM KEPLER DATA , 2014, 1409.2886.

[56]  Renyu Hu,et al.  STABILITY OF CO2 ATMOSPHERES ON DESICCATED M DWARF EXOPLANETS , 2015, 1501.06876.

[57]  W. Munk,et al.  Measurement of the Roughness of the Sea Surface from Photographs of the Sun’s Glitter , 1954 .

[58]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[59]  James F. Allen,et al.  Photosynthetic reaction centers , 1998, FEBS letters.

[60]  E. Guinan,et al.  The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present , 2016, 1608.06813.

[61]  E. Boyle,et al.  The global carbon cycle: a test of our knowledge of earth as a system. , 2000, Science.

[62]  Dimitar Sasselov,et al.  PREDICTIONS OF THE ATMOSPHERIC COMPOSITION OF GJ 1132b , 2016, 1607.03906.

[63]  P. Tackley,et al.  Can we constrain the interior structure of rocky exoplanets from mass and radius measurements , 2015, 1502.03605.

[64]  N. Planavsky,et al.  The rise of oxygen in Earth’s early ocean and atmosphere , 2014, Nature.

[65]  Y. Abe,et al.  Emergence of two types of terrestrial planet on solidification of magma ocean , 2013, Nature.

[66]  L. Kaltenegger,et al.  TRANSMISSION SPECTRUM OF EARTH AS A TRANSITING EXOPLANET FROM THE ULTRAVIOLET TO THE NEAR-INFRARED , 2013, 1307.0416.

[67]  B. Pierson,et al.  Chloroflexus aurantiacus and ultraviolet radiation: Implications for archean shallow-water stromatolites , 1993, Origins of life and evolution of the biosphere.

[68]  Mark W. Claire,et al.  Biological regulation of atmospheric chemistry en route to planetary oxygenation , 2017, Proceedings of the National Academy of Sciences.

[69]  N. Kiang,et al.  Exoplanet Biosignatures: Future Directions , 2017, Astrobiology.

[70]  K. Stapelfeldt,et al.  Exoplanet Biosignatures: Observational Prospects , 2017, Astrobiology.

[71]  Austin,et al.  A Decreased Probability of Habitable Planet Formation around Low-Mass Stars , 2007, 0707.1711.

[72]  X. Delfosse,et al.  Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph , 2016, 1609.03082.

[73]  Peter Hauschildt,et al.  Evolutionary models for solar metallicity low - mass stars: Mass - magnitude relationships and color - magnitude diagrams , 1998 .

[74]  Dani Guzman,et al.  The GMT-consortium large earth finder (G-CLEF): an optical echelle spectrograph for the Giant Magellan Telescope (GMT) , 2016, Astronomical Telescopes + Instrumentation.

[75]  Alex Glocer,et al.  On the Magnetic Protection of the Atmosphere of Proxima Centauri b , 2017 .

[76]  R. Berner Burial of organic carbon and pyrite sulfur in the modern ocean : its geochemical and environmental significance , 1982 .

[77]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[78]  Robert A. Berner,et al.  GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2 , 2006 .

[79]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[80]  Charles D. Keeling,et al.  The Concentration and Isotopic Abundances of Carbon Dioxide in the Atmosphere , 1960 .

[81]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES , 2012, 1210.6885.

[82]  Dimitar Sasselov,et al.  Spectral fingerprints of Earth-like planets around FGK stars. , 2012, Astrobiology.

[83]  S. Allakhverdiev,et al.  Photoinhibition of photosystem II under environmental stress. , 2007, Biochimica et biophysica acta.

[84]  David C. Catling,et al.  The loss of mass‐independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane , 2006 .

[85]  Christopher T. Reinhard,et al.  Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event , 2014 .

[86]  Michael A. Arthur,et al.  Methane-rich Proterozoic atmosphere? , 2003 .

[87]  K. Jucks,et al.  Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. , 2002, Astrobiology.

[88]  Edward W. Schwieterman,et al.  Nonphotosynthetic Pigments as Potential Biosignatures , 2014, Astrobiology.

[89]  Joanna K. Barstow,et al.  Constraining the atmosphere of GJ 1214b using an optimal estimation technique , 2013, 1306.6567.

[90]  Giada Arney,et al.  The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth , 2016, Astrobiology.

[91]  J. Winn Exoplanet Transits and Occultations , 2010 .

[92]  W. Bleeker,et al.  Review Paper. Mineral evolution , 2008 .

[93]  T. Owen,et al.  Deuterium on Venus: Observations From Earth , 1991, Science.

[94]  Donald A. Bryant,et al.  Candidatus Chloracidobacterium thermophilum: An Aerobic Phototrophic Acidobacterium , 2007, Science.

[95]  William C. Danchi,et al.  How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape , 2017 .

[96]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[97]  U. Fink,et al.  A new spectrum of Triton near the time of the Voyager encounter , 1991 .

[98]  A. Sozzetti Exoplanets with Gaia: Synergies in the Making , 2015, 1502.03575.

[99]  G. Luther,et al.  Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation , 2007 .

[100]  Mercedes Lopez-Morales,et al.  FEASIBILITY STUDIES FOR THE DETECTION OF O2 IN AN EARTH-LIKE EXOPLANET , 2013, 1312.1585.

[101]  H. Rauer,et al.  Potential Biosignatures in Super-Earth Atmospheres , 2010, 1102.0867.

[102]  J. Kasting,et al.  The evolution of atmospheric ozone , 1980 .

[103]  Roger Buick,et al.  Did the Proterozoic ‘Canfield Ocean’ cause a laughing gas greenhouse? , 2007 .

[104]  C. Goldblatt,et al.  The Nitrogen Budget of Earth , 2015, 1505.03813.

[105]  E. Boyle,et al.  Global carbon cycle: A test of our knowledge of the earth , 2000 .

[106]  Tyler D. Robinson,et al.  ABIOTIC OZONE AND OXYGEN IN ATMOSPHERES SIMILAR TO PREBIOTIC EARTH , 2014, 1407.2622.

[107]  Cfa,et al.  IMPACT OF ATMOSPHERIC REFRACTION: HOW DEEPLY CAN WE PROBE EXO-EARTH'S ATMOSPHERES DURING PRIMARY ECLIPSE OBSERVATIONS? , 2013, 1312.6625.

[108]  M. M. Shapiro,et al.  THE COLLISION-INDUCED FUNDAMENTAL AND FIRST OVERTONE BANDS OF OXYGEN AND NITROGEN , 1966 .

[109]  Govindjee,et al.  Spectral signatures of photosynthesis. I. Review of Earth organisms. , 2007, Astrobiology.

[110]  Xavier Bonfils,et al.  A rocky planet transiting a nearby low-mass star , 2015, Nature.

[111]  J. Fortney,et al.  THE IMPACT OF NON-UNIFORM THERMAL STRUCTURE ON THE INTERPRETATION OF EXOPLANET EMISSION SPECTRA , 2016, 1607.03230.

[112]  Xiaoying Shi,et al.  Extremely low oxygen concentration in mid-Proterozoic shallow seawaters , 2016 .

[113]  S. Carroll Chance and necessity: the evolution of morphological complexity and diversity , 2001, Nature.

[114]  D. Erwin,et al.  Earth’s oxygen cycle and the evolution of animal life , 2016, Proceedings of the National Academy of Sciences.

[115]  Franz Schreier,et al.  Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars. , 2012, Astrobiology.

[116]  M. Rosing,et al.  13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland , 1999, Science.

[117]  J. Olson Chlorophyll organization in green photosynthetic bacteria. , 1980, Biochimica et biophysica acta.

[118]  Joshua Krissansen-Totton,et al.  Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism. , 2015, Astrobiology.

[119]  Mark Clampin,et al.  ATLAST detector needs for direct spectroscopic biosignature characterization in the visible and near-IR , 2015, SPIE Optical Engineering + Applications.

[120]  Sarah Kendrew,et al.  Transit spectroscopy with James Webb Space Telescope: systematics, starspots and stitching , 2015, 1501.06349.

[121]  Lisa Kaltenegger,et al.  Surface biosignatures of exo-Earths: Remote detection of extraterrestrial life , 2015, Proceedings of the National Academy of Sciences.

[122]  Margaret Turnbull,et al.  Detectability of planetary characteristics in disk-averaged spectra II: synthetic spectra and light-curves of earth. , 2006, Astrobiology.

[123]  Ignasi Ribas,et al.  The habitability of Proxima Centauri b II. Possible climates and Observability , 2016, 1608.06827.

[124]  JAMES C. G. Walker,et al.  Atmospheric Ozone and the History of Life. , 1972 .

[125]  Laura Kreidberg,et al.  PROSPECTS FOR CHARACTERIZING THE ATMOSPHERE OF PROXIMA CENTAURI b , 2016, 1608.07345.

[126]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[127]  Feng Tian,et al.  History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs , 2015 .

[128]  A. Misra,et al.  IDENTIFYING PLANETARY BIOSIGNATURE IMPOSTORS: SPECTRAL FEATURES OF CO AND O4 RESULTING FROM ABIOTIC O2/O3 PRODUCTION , 2016, The astrophysical journal. Letters.

[129]  Shiladitya DasSarma,et al.  Exoplanet Biosignatures: A Framework for Their Assessment , 2017, Astrobiology.

[130]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[131]  D. M. Gates,et al.  Spectral Properties of Plants , 1965 .

[132]  Y. Yokoyama,et al.  Two-step rise of atmospheric oxygen linked to the growth of continents , 2016 .

[133]  Crispin T. S. Little,et al.  Evidence for early life in Earth’s oldest hydrothermal vent precipitates , 2017, Nature.

[134]  A. Sancar,et al.  Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. , 2000, Annual review of biochemistry.

[135]  Laurence S. Rothman,et al.  New section of the HITRAN database: Collision-induced absorption (CIA) , 2012 .

[136]  N. Sleep The Hadean-Archaean environment. , 2010, Cold Spring Harbor perspectives in biology.

[137]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[138]  A. Chivas,et al.  Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures , 2016, Nature.

[139]  J. Olson The evolution of photosynthesis. , 1970, Science.

[140]  R. Berner The phanerozoic carbon cycle : CO[2] and O[2] , 2004 .

[141]  M. Haddox,et al.  IN BIOLOGICAL REGULATION , 1977 .

[142]  The University of Tokyo,et al.  GLOBAL MAPPING OF EARTH-LIKE EXOPLANETS FROM SCATTERED LIGHT CURVES , 2010, 1004.5152.

[143]  Aivo Lepland,et al.  Reassessing the evidence for the earliest traces of life , 2002, Nature.

[144]  E. Cady,et al.  Exo-S: Starshade Probe-Class Exoplanet Direct Imaging Mission Concept , 2014 .

[145]  A. Misra,et al.  DISCRIMINATING BETWEEN CLOUDY, HAZY, AND CLEAR SKY EXOPLANETS USING REFRACTION , 2014, 1409.7072.

[146]  C. McKay,et al.  Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time". , 2005, Astrobiology.

[147]  T. Cardona Photosystem II is a Chimera of Reaction Centers , 2017, Journal of Molecular Evolution.

[148]  T. Cardona A fresh look at the evolution and diversification of photochemical reaction centers , 2014, Photosynthesis Research.

[149]  James F. Kasting,et al.  HABITABLE ZONES AROUND LOW MASS STARS AND THE SEARCH FOR EXTRATERRESTRIAL LIFE , 1997, Origins of life and evolution of the biosphere.

[150]  Nikole K. Lewis,et al.  A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c , 2016, Nature.

[151]  J. Kasting,et al.  Greenhouse warming by nitrous oxide andmethane in the Proterozoic , 2011 .

[152]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[153]  David I. Groves,et al.  Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia , 1981 .

[154]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[155]  Victoria Meadows,et al.  Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets. , 2013, Astrobiology.

[156]  Frances Westall,et al.  Implications of in situ calcification for photosynthesis in a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa , 2011 .

[157]  Schwieterman,et al.  DETECTING OCEANS ON EXOPLANETS USING PHASE-DEPENDENT MAPPING WITH NEXT- GENERATION CORONAGRAPH-EQUIPPED TELESCOPES , 2017 .

[158]  E. Schulze,et al.  Current Perspectives of Steady-state Stomatal Responses to Environment , 1976 .

[159]  J. Kasting,et al.  Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. , 2002, Astrobiology.

[160]  J. Lederberg,et al.  Signs of Life: Criterion-System of Exobiology , 1965, Nature.

[161]  Victoria S. Meadows,et al.  Reflections on O2 as a Biosignature in Exoplanetary Atmospheres , 2017, Astrobiology.

[162]  T. Trautmann,et al.  Characterization of potentially habitable planets: Retrieval of atmospheric and planetary properties from emission spectra , 2013, 1301.0217.

[163]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[164]  J. Kasting,et al.  Planetary Atmospheres and Life , 2007 .

[165]  Michael R. Line,et al.  THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA , 2015, 1511.09443.

[166]  D. Canfield,et al.  The Global Oxygen Cycle , 2012 .

[167]  H. Rauer,et al.  A detailed pathway analysis of the chemical reaction system generating the Martian vertical ozone profile , 2017 .

[168]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[169]  J. Kasting,et al.  Oxygen False Positives in Terrestrial Planetary Atmospheres: An Update from the Front Lines , 2017 .

[170]  Kevin Heng,et al.  The theory of transmission spectra revisited: a semi-analytical method for interpreting WFC3 data and an unresolved challenge , 2017, 1702.02051.

[171]  A. J. Kaufman,et al.  Pervasive oxygenation along late Archaean ocean margins , 2010 .

[172]  E. Roden,et al.  Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation , 2011 .

[173]  Jennifer M. Robinson,et al.  PHANEROZOIC ATMOSPHERIC OXYGEN , 2003 .

[174]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[175]  Renyu Hu,et al.  Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life , 2017, Astrobiology.

[176]  E. Chassefière,et al.  Inorganic chemistry of O2 in a dense primitive atmosphere , 1995, Planetary and space science.

[177]  D. Sasselov,et al.  DETECTING PLANETARY GEOCHEMICAL CYCLES ON EXOPLANETS: ATMOSPHERIC SIGNATURES AND THE CASE OF SO2 , 2010 .

[178]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[179]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[180]  David C. Catling,et al.  IS THE PALE BLUE DOT UNIQUE? OPTIMIZED PHOTOMETRIC BANDS FOR IDENTIFYING EARTH-LIKE EXOPLANETS , 2015, 1512.00502.

[181]  F. Selsis,et al.  Potential biosignatures in super-Earth atmospheres I. Spectral appearance of super-Earths around M dwarfs , 2011 .

[182]  J. Kasting,et al.  HABITABLE ZONES AROUND LOW MASS STARS AND THE SEARCH FOR EXTRATERRESTRIAL LIFE , 1997, Origins of life and evolution of the biosphere.

[183]  I. Crossfield Exoplanet Atmospheres and Giant Ground-Based Telescopes , 2016, 1604.06458.

[184]  G. T. Fraser,et al.  Absolute intensities for the O2 1.27 μm continuum absorption , 1999 .

[185]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[186]  G. Marcy,et al.  THE MASS–RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII , 2013, 1312.0936.

[187]  K. Zahnle,et al.  Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth , 2001, Science.

[188]  N. Planavsky,et al.  A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic , 2016 .

[189]  K. D. McKeegan,et al.  Evidence for life on Earth before 3,800 million years ago , 1996, Nature.

[190]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[191]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[192]  D. Catling,et al.  A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen , 2015, American Journal of Science.

[193]  N. Narita,et al.  Titania may produce abiotic oxygen atmospheres on habitable exoplanets , 2015, Scientific Reports.

[194]  Chuanfei Dong,et al.  Is Proxima Centauri b Habitable? A Study of Atmospheric Loss , 2017, 1702.04089.

[195]  L. Lara,et al.  Photochemistry of Planetary Atmospheres , 2002 .

[196]  M. Rosing,et al.  U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis , 2004 .

[197]  A. Anbar,et al.  Astrobiological stoichiometry. , 2014, Astrobiology.

[198]  A. Igamberdiev,et al.  Land plants equilibrate O2 and CO2 concentrations in the atmosphere , 2006, Photosynthesis Research.

[199]  J. Kasting,et al.  Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon , 2011, Geobiology.

[200]  Roger E. Summons,et al.  Rapid oxygenation of Earths atmosphere 2.33 billion years ago , 2016 .

[201]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[202]  L. Kaltenegger,et al.  DETECTING VOLCANISM ON EXTRASOLAR PLANETS , 2010, 1009.1355.

[203]  Jonathan Tennyson,et al.  TAU-REX I: A NEXT GENERATION RETRIEVAL CODE FOR EXOPLANETARY ATMOSPHERES , 2014, 1409.2312.

[204]  Shawn Domagal-Goldman,et al.  Abiotic Buildup of Ozone , 2010 .

[205]  Edward W. Schwieterman,et al.  False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth , 2017, Astrobiology.

[206]  Robin Wordsworth,et al.  ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS , 2014, 1403.2713.

[207]  G. Arrhenius,et al.  Apatite in early Archean Isua supracrustal rocks, southern West Greenland: its origin, association with graphite and potential as a biomarker , 2002 .

[208]  S. Seager,et al.  ALIEN MAPS OF AN OCEAN-BEARING WORLD , 2009, 0905.3742.

[209]  Shawn Domagal-Goldman,et al.  DETECTING AND CONSTRAINING N2 ABUNDANCES IN PLANETARY ATMOSPHERES USING COLLISIONAL PAIRS , 2015, 1507.07945.

[210]  J. Olson,et al.  Origin and evolution of photosynthetic reaction centers , 1986, Origins of life and evolution of the biosphere.

[211]  P. Falkowski,et al.  Electrons, life and the evolution of Earth's oxygen cycle , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[212]  N. Sheldon Precambrian paleosols and atmospheric CO2 levels , 2006 .

[213]  Edward W. Schwieterman,et al.  DETECTION OF OCEAN GLINT AND OZONE ABSORPTION USING LCROSS EARTH OBSERVATIONS , 2014, 1405.4557.

[214]  Colors of extreme exo-Earth environments. , 2012, Astrobiology.

[215]  J. Olson Photosynthesis in the Archean Era , 2006, Photosynthesis Research.

[216]  A. Vandaele,et al.  Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O , 1999, Environmental science and pollution research international.

[217]  Paul B. Hays,et al.  A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature , 1981 .

[218]  Sara Seager,et al.  PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H2S AND SO2 PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES , 2013, 1302.6603.

[219]  Franck Selsis,et al.  Signature of life on exoplanets: Can Darwin produce false positive detections? , 2002 .

[220]  J. Linsky,et al.  High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets , 2013, 1310.2590.

[221]  Sara Seager,et al.  An astrophysical view of Earth-based metabolic biosignature gases. , 2012, Astrobiology.

[222]  D. Mitchell,et al.  The electric wind of Venus: A global and persistent “polar wind”‐like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions , 2016, Geophysical Research Letters.

[223]  Sara Seager,et al.  The search for signs of life on exoplanets at the interface of chemistry and planetary science , 2015, Science Advances.

[224]  H Rauer,et al.  Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model. , 2018, Astrobiology.

[225]  L. Kump,et al.  Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago , 2007, Nature.

[226]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[227]  Olivier Guyon,et al.  The Habitable Exoplanet (HabEx) Imaging Mission: preliminary science drivers and technical requirements , 2016, Astronomical Telescopes + Instrumentation.

[228]  C. Unterborn,et al.  The Effects of Mg/Si on the Exoplanetary Refractory Oxygen Budget , 2016, 1604.08309.

[229]  Joshua Krissansen-Totton,et al.  On Detecting Biospheres from Chemical Thermodynamic Disequilibrium in Planetary Atmospheres. , 2015, Astrobiology.

[230]  James F Kasting,et al.  Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. , 2011, Astrobiology.

[231]  R. Summons,et al.  Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago , 2016, Science Advances.

[232]  R. Barnes,et al.  Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions , 2015, Astrobiology.

[233]  Mareike Godolt,et al.  Sensitivity of biosignatures on Earth-like planets orbiting in the habitable zone of cool M-dwarf Stars to varying stellar UV radiation and surface biomass emissions , 2013 .

[234]  L. Liang,et al.  Identification of an Archean marine oxygen oasis , 2014 .

[235]  K. Strong,et al.  Temperature-dependent absorption cross-sections of , 2009 .

[236]  William C. Danchi,et al.  Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun , 2016 .

[237]  O. Demangeon,et al.  Is the presence of oxygen on an exoplanet a reliable biosignature? , 2011, Astrobiology.

[238]  Barbara Sherwood Lollar,et al.  ABIOTIC METHANE ON EARTH , 2013 .

[239]  H. Rauer,et al.  E P ] 22 A pr 2 01 3 N 2-associated surface warming on early Mars , 2014 .

[240]  S. Gezari,et al.  From Cosmic Birth to Living Earths: The Future of UVOIR Space Astronomy , 2015, 1507.04779.

[241]  D. Canfield,et al.  Early anaerobic metabolisms , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[242]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[243]  R. Poole,et al.  FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY , 2013, 1302.3251.

[244]  Drake Deming,et al.  Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets , 2016, 1702.02994.

[245]  S. Calcutt,et al.  The NEMESIS planetary atmosphere radiative transfer and retrieval tool , 2008 .

[246]  Sascha P. Quanz,et al.  Direct detection of exoplanets in the 3–10 μm range with E-ELT/METIS , 2014, International Journal of Astrobiology.

[247]  H. Strauss,et al.  Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment , 1992, Nature.

[248]  S. Airieau,et al.  Observation of wavelength‐sensitive mass‐independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere , 2001 .

[249]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[250]  Victoria S. Meadows,et al.  Planetary Environmental Signatures for Habitability and Life , 2008 .

[251]  E. Chassefière,et al.  Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: The case of Venus , 1996 .

[252]  Kerri Cahoy,et al.  THERMAL EMISSION AND REFLECTED LIGHT SPECTRA OF SUPER EARTHS WITH FLAT TRANSMISSION SPECTRA , 2015, 1511.01492.

[253]  Nicolas B. Cowan,et al.  DETERMINING REFLECTANCE SPECTRA OF SURFACES AND CLOUDS ON EXOPLANETS , 2013, 1302.0006.

[254]  C. Bauer,et al.  Molecular evidence for the early evolution of photosynthesis. , 2000, Science.

[255]  Randolph L. Kirk,et al.  Specular reflection on Titan: Liquids in Kraken Mare , 2010 .

[256]  James B. Burkholder,et al.  Absorption measurements of oxygen between 330 and 1140 nm , 1990 .

[257]  Daniel Foreman-Mackey,et al.  The Habitability of Proxima Centauri b I: Evolutionary Scenarios , 2016, 1608.06919.

[258]  J. Lovelock,et al.  A Physical Basis for Life Detection Experiments , 1965, Nature.

[259]  Shawn Domagal-Goldman,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS , 2014, 1404.5292.

[260]  S. Seager,et al.  A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES , 2009, 0910.1347.