CRISPR/Cas9 genome editing in ergot fungus Claviceps purpurea.

[1]  A. Ram,et al.  Efficient marker free CRISPR/Cas9 genome editing for functional analysis of gene families in filamentous fungi , 2019, Fungal Biology and Biotechnology.

[2]  R. Kahmann,et al.  CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. , 2019, Fungal genetics and biology : FG & B.

[3]  K. Holubová,et al.  Modification of Barley Plant Productivity Through Regulation of Cytokinin Content by Reverse-Genetics Approaches , 2018, Front. Plant Sci..

[4]  J. Maruyama,et al.  Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus Aspergillus oryzae , 2018, Applied and Environmental Microbiology.

[5]  Junfang Lin,et al.  Efficient CRISPR-Cas9 Gene Disruption System in Edible-Medicinal Mushroom Cordyceps militaris , 2018, Front. Microbiol..

[6]  P. Tudzynski,et al.  Manipulation of cytokinin level in the ergot fungus Claviceps purpurea emphasizes its contribution to virulence , 2018, Current Genetics.

[7]  Xiangke Liao,et al.  Review of CRISPR/Cas9 sgRNA Design Tools , 2018, Interdisciplinary Sciences: Computational Life Sciences.

[8]  K. Krishnamurthy,et al.  Astrocytes expressing ALS‐linked mutant FUS induce motor neuron death through release of tumor necrosis factor‐alpha , 2018, Glia.

[9]  Steven Chang,et al.  Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans , 2017, Fungal Biology and Biotechnology.

[10]  R. Mikut,et al.  Tracking of Indels by DEcomposition is a Simple and Effective Method to Assess Efficiency of Guide RNAs in Zebrafish. , 2017, Zebrafish.

[11]  G. Zou,et al.  Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology , 2017, Scientific Reports.

[12]  G. Zou,et al.  CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species , 2017 .

[13]  G. Zou,et al.  CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana , 2017, Scientific Reports.

[14]  Maximilian Wenderoth,et al.  Establishment of CRISPR/Cas9 in Alternaria alternata. , 2017, Fungal genetics and biology : FG & B.

[15]  B. Ahring,et al.  A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. , 2017, Journal of microbiological methods.

[16]  Chihiro Abe,et al.  Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9 , 2017, Scientific Reports.

[17]  H. Wandall,et al.  Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis , 2017, Nature Protocols.

[18]  U. Mortensen,et al.  Genes Linked to Production of Secondary Metabolites in Talaromyces atroroseus Revealed Using CRISPR-Cas9 , 2017, PloS one.

[19]  Chaoguang Tian,et al.  Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering , 2017, Biotechnology for Biofuels.

[20]  Joosu Kuivanen,et al.  Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9 , 2016, Microbial Cell Factories.

[21]  Joshua K Young,et al.  Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes , 2016, Nature Communications.

[22]  P. Drapeau,et al.  A simplified method for identifying early CRISPR-induced indels in zebrafish embryos using High Resolution Melting analysis , 2016, BMC Genomics.

[23]  K. Shinozaki,et al.  Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants , 2016, Scientific Reports.

[24]  A. Driessen,et al.  CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum. , 2016, ACS synthetic biology.

[25]  D. Amador-Noguez,et al.  TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. , 2016, Fungal genetics and biology : FG & B.

[26]  S. Reissmann,et al.  Genome editing in Ustilago maydis using the CRISPR-Cas system. , 2016, Fungal genetics and biology : FG & B.

[27]  K. Kitamoto,et al.  Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae , 2015, Biotechnology Letters.

[28]  Dengwei Zhang,et al.  Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism , 2016, Plant Cell Reports.

[29]  T. Arie,et al.  Tailor‐made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus , 2015, Biotechnology and bioengineering.

[30]  B. Tyler,et al.  Efficient disruption and replacement of an effector gene in the oomycete P hytophthora sojae using CRISPR/Cas9 , 2015, Molecular plant pathology.

[31]  J. Dunlap,et al.  Development of the CRISPR/Cas9 System for Targeted Gene Disruption in Aspergillus fumigatus , 2015, Eukaryotic Cell.

[32]  P. Tudzynski,et al.  De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. , 2015, Environmental microbiology.

[33]  Q. Xia,et al.  A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana , 2015 .

[34]  U. Mortensen,et al.  A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi , 2015, PloS one.

[35]  G. Zou,et al.  Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system , 2015, Cell Discovery.

[36]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[37]  A. Perkins,et al.  A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing , 2014, BMC Genomics.

[38]  M. Zaratiegui,et al.  Implementation of the CRISPR-Cas9 system in fission yeast , 2014, Nature Communications.

[39]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[40]  Botao Zhang,et al.  Efficient genome editing in plants using a CRISPR/Cas system , 2013, Cell Research.

[41]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[42]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[43]  Elissaveta G. Arnaoudova,et al.  Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci , 2013, PLoS genetics.

[44]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[45]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[46]  Mo-Huang Li,et al.  A simple, high sensitivity mutation screening using Ampligase mediated T7 endonuclease I and Surveyor nuclease with microfluidic capillary electrophoresis , 2012, Electrophoresis.

[47]  P. Tudzynski,et al.  Ergot: from witchcraft to biotechnology. , 2009, Molecular plant pathology.

[48]  Jesús Vicente-Carbajosa,et al.  DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques , 2008, BMC Research Notes.

[49]  R. Krska,et al.  Significance, chemistry and determination of ergot alkaloids: A review , 2008, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[50]  Romualdas Vaisvila,et al.  USER™ friendly DNA engineering and cloning method by uracil excision , 2007, Nucleic acids research.

[51]  Christopher M. Crew,et al.  A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors , 2006, Proceedings of the National Academy of Sciences.

[52]  S. Osmani,et al.  A Versatile and Efficient Gene-Targeting System for Aspergillus nidulans , 2006, Genetics.

[53]  Yasuji Koyama,et al.  Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae , 2006, Molecular Genetics and Genomics.

[54]  G. Braus,et al.  Gene Targeting in Aspergillus fumigatus by Homologous Recombination Is Facilitated in a Nonhomologous End- Joining-Deficient Genetic Background , 2006, Eukaryotic Cell.

[55]  Keiichiro Suzuki,et al.  Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  P. Tudzynski,et al.  Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. , 2002, Fungal genetics and biology : FG & B.

[57]  P. Tudzynski,et al.  Variation in Karyotype and Ploidy Level Among Field Isolates of Claviceps purpurea , 1999 .

[58]  P. Tudzynski,et al.  Evidence for an ergot alkaloid gene cluster in Claviceps purpurea , 1999, Molecular and General Genetics MGG.

[59]  C. d’Enfert,et al.  Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5′′-monophosphate decarboxylase , 1998, Current Genetics.

[60]  A. Clutterbuck,et al.  Integrative and replicative transformation of Penicillium canescens with a heterologous nitrate-reductase gene , 1995, Current Genetics.

[61]  Fred Winston,et al.  Construction of a set of convenient saccharomyces cerevisiae strains that are isogenic to S288C , 1995, Yeast.

[62]  P. Tudzynski,et al.  The Claviceps purpurea glyceraldehyde-3-phosphate dehydrogenase gene: cloning, characterization, and use for the improvement of a dominant selection system , 1994, Current Genetics.

[63]  S. Unkles,et al.  Transformation of Gibberella fujikuroi: effect of the Aspergillus nidulans AMA1 sequence on frequency and integration , 1992, Current Genetics.

[64]  P. Tudzynski,et al.  Efficient transformation of Claviceps purpurea using pyrimidine auxotrophic mutants: cloning of the OMP decarboxylase gene , 1992, Molecular and General Genetics MGG.

[65]  J. Cenis,et al.  Rapid extraction of fungal DNA for PCR amplification. , 1992, Nucleic acids research.

[66]  M. Dante,et al.  Multifunctional yeast high-copy-number shuttle vectors. , 1992, Gene.

[67]  A. Clutterbuck,et al.  An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. , 1991, Gene.

[68]  R. Contreras,et al.  A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae , 1989, Current Genetics.

[69]  T. Goosen,et al.  Transformation of Claviceps purpurea using a bleomycin resistance gene , 1989, Applied Microbiology and Biotechnology.

[70]  J. Martín,et al.  Selection and characterization of pyrG mutants of Penicillium chrysogenum lacking orotidine-5′-phosphate decarboxylase and complementation by the pyr4 gene of Neurospora crassaa , 1987, Current Genetics.

[71]  C. Limoli,et al.  Radiation and hydrogen peroxide induced free radical damage to DNA. , 1987, The British journal of cancer. Supplement.

[72]  K. Brauer,et al.  Induced parasexual processes in Claviceps sp. strain SD58 , 1987, Applied and environmental microbiology.

[73]  C. Chilvers,et al.  Torsion of the testis: a new risk factor for testicular cancer. , 1987, British journal of cancer.

[74]  P. Sedmera,et al.  High‐production mutant Claviceps purpurea 59 accumulating secoclavines , 1986 .

[75]  I. Crawford,et al.  Structure and regulation of the anthranilate synthase genes in Pseudomonas aeruginosa: I. Sequence of trpG encoding the glutamine amidotransferase subunit. , 1986, Molecular biology and evolution.

[76]  S. Pancaldi,et al.  Effects of Congo red on wall synthesis and morphogenesis in Saccharomyces cerevisiae , 1983 .

[77]  P. Tudzynski,et al.  Genetics of the ergot fungus Claviceps purpurea , 1978, Theoretical and Applied Genetics.

[78]  L. J. Nisbet,et al.  Differentiation of Claviceps purpurea in axenic culture. , 1976, Journal of general microbiology.

[79]  R. Hütter,et al.  Organization of the Tryptophan Pathway: a Phylogenetic Study of the Fungi , 1967, Journal of bacteriology.

[80]  K. Strnadová UV–MUTANTEN BEI CLAVICEPS PURPUREA , 1964 .

[81]  W. W. Bonns A PRELIMINARY STUDY OF CLAVICEPS PURPUREA IN CULTURE , 1922 .

[82]  U. Mortensen,et al.  Genome Editing: CRISPR-Cas9. , 2018, Methods in molecular biology.

[83]  J. García-Martínez,et al.  Short motif sequences determine the targets of the prokaryotic CRISPR defence system. , 2009, Microbiology.

[84]  N. Lorenz,et al.  Use of a nonhomologous end joining deficient strain (Deltaku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. , 2008, Fungal genetics and biology : FG & B.

[85]  K. Strnadová A method of preparation and application of nitrous acid as a mutagen inClaviceps purpurea , 2008, Folia Microbiologica (Prague).

[86]  P. Pouwels,et al.  Development of a homologous transformation system for Aspergillus niger based on the pyrG gene , 2004, Molecular and General Genetics MGG.

[87]  Jeffrey L. Smith,et al.  Sequence of the cloned pyr4 gene of Trichoderma reesei and its use as a homologous selectable marker for transformation , 2004, Current Genetics.

[88]  P. Tudzynski,et al.  Structure and expression of two polygalacturonase genes of Claviceps purpurea oriented in tandem and cytological evidence for pectinolytic enzyme activity during infection of rye , 1996 .

[89]  T. Yamada The role of auxin in plant-disease development. , 1993, Annual review of phytopathology.

[90]  P. Niederberger,et al.  Tryptophan biosynthetic genes in eukaryotic microorganisms. , 1986, Annual review of microbiology.

[91]  R. Silverman,et al.  Model chemistry for a covalent mechanism of action of orotidine 5'-phosphate decarboxylase , 1982 .

[92]  F. Bové The story of ergot. , 1970 .