Memory effects in complex materials and nanoscale systems

Memory effects are ubiquitous in nature and are particularly relevant at the nanoscale where the dynamical properties of electrons and ions strongly depend on the history of the system, at least within certain time scales. We review here the memory properties of various materials and systems which appear most strikingly in their non-trivial, time-dependent resistive, capacitative and inductive characteristics. We describe these characteristics within the framework of memristors, memcapacitors and meminductors, namely memory-circuit elements with properties that depend on the history and state of the system. We examine basic issues related to such systems and critically report on both theoretical and experimental progress in understanding their functionalities. We also discuss possible applications of memory effects in various areas of science and technology ranging from digital to analog electronics, biologically inspired circuits and learning. We finally discuss future research opportunities in the field.

[1]  Dimitri Jeltsema,et al.  Memristive port-Hamiltonian Systems , 2010 .

[2]  M. Di Ventra,et al.  Current-voltage characteristics of semiconductor/ferromagnet junctions in the spin-blockade regime , 2008 .

[3]  Y. Pershin,et al.  Spin Memristive Systems: Spin Memory Effects in Semiconductor Spintronics , 2008, 0806.2151.

[4]  Konstantin K. Likharev,et al.  Superconducting weak links , 1979 .

[5]  Kiyoyuki Terakura,et al.  First-principles study of the rectifying properties of Pt / TiO 2 interface , 2009 .

[6]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[7]  György Cserey,et al.  Macromodeling of the Memristor in SPICE , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[9]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[10]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[11]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[12]  Warren Robinett,et al.  Memristor-CMOS hybrid integrated circuits for reconfigurable logic. , 2009, Nano letters.

[13]  Blaise Mouttet,et al.  A Memadmittance Systems Model for Thin Film Memory Materials , 2010 .

[14]  S. Yasuda,et al.  Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution , 2007, cond-mat/0702564.

[15]  Michel Dyakonov,et al.  Current-induced spin orientation of electrons in semiconductors , 1971 .

[16]  Yujong Kim,et al.  Colossal electroresistance mechanism in a Au ∕ Pr 0.7 Ca 0.3 Mn O 3 ∕ Pt sandwich structure: Evidence for a Mott transition , 2006 .

[17]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[18]  Antonio Marcus Nogueira Lima,et al.  Modeling of the hysteretic metal-insulator transition in a vanadium dioxide infrared detector , 2002 .

[19]  P. Lugli,et al.  Read-Out Design Rules for Molecular Crossbar Architectures , 2009, IEEE Transactions on Nanotechnology.

[20]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[21]  Wei Wu,et al.  A hybrid nanomemristor/transistor logic circuit capable of self-programming , 2009, Proceedings of the National Academy of Sciences.

[22]  Frank Moss,et al.  Neuro-informatics and neural modelling , 2001 .

[23]  T. A. Wey,et al.  Amplitude modulator circuit featuring TiO2 memristor with linear dopant drift , 2009 .

[24]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[25]  A. Pirovano,et al.  A Phase Change Memory Compact Model for Multilevel Applications , 2007, IEEE Electron Device Letters.

[26]  C. Wright,et al.  Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices , 2004 .

[27]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[28]  Yasuhisa Naitoh,et al.  Resistance switch employing a simple metal nanogap junction , 2006, Nanotechnology.

[29]  Wen Hwa Chu,et al.  Analysis of tip deflection and force of a bimetallic cantilever microactuator , 1993 .

[30]  K. Terabe,et al.  Quantized conductance atomic switch , 2005, Nature.

[31]  Daniel Guyomar,et al.  Low frequency modelling of hysteresis behaviour and dielectric permittivity in ferroelectric ceramics under electric field , 2007 .

[32]  Panagiotis Dimitrakis,et al.  MOS memory structures by very-low-energy-implanted Si in thin SiO2 , 2003 .

[33]  Koon Gee Neoh,et al.  Polymer electronic memories: Materials, devices and mechanisms , 2008 .

[34]  M. Di Ventra,et al.  Solid-state memcapacitive system with negative and diverging capacitance , 2009, 0912.4921.

[35]  C. Gamrat,et al.  Nanotube devices based crossbar architecture: toward neuromorphic computing , 2010, Nanotechnology.

[36]  Fritz Keilmann,et al.  Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide , 2008 .

[37]  X. Jianping,et al.  Transient chaos in smooth memristor oscillator , 2010 .

[38]  Valeriy A. Slipko,et al.  Radial spin helix in two-dimensional electron systems with Rashba spin-orbit coupling , 2010 .

[39]  Panagiotis Dimitrakis,et al.  Langmuir−Blodgett Film Deposition of Metallic Nanoparticles and Their Application to Electronic Memory Structures , 2003 .

[40]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[41]  J. Tour,et al.  Resistive switches and memories from silicon oxide. , 2010, Nano letters.

[42]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[43]  T. Berzina,et al.  Role of the solid electrolyte composition on the performance of a polymeric memristor , 2010 .

[44]  I. Pavlov,et al.  Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. , 1929, Annals of neurosciences.

[45]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[46]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .

[47]  A. Pirovano,et al.  Electronic switching in phase-change memories , 2004, IEEE Transactions on Electron Devices.

[48]  Mika Laiho,et al.  Two memristors suffice to compute all Boolean functions (Organic and inorganic circuits and devices) , 2010 .

[49]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[50]  Yong Qing Fu,et al.  MEMS based digital variable capacitors with a high-k dielectric insulator , 2006 .

[51]  H.-G. Meyer,et al.  Resonant excitations of single and two-qubit systems coupled to a tank circuit , 2008 .

[52]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[53]  Toshiro Hiramoto,et al.  Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals , 1998 .

[54]  F. Argall Switching phenomena in titanium oxide thin films , 1968 .

[55]  Yoseph Imry,et al.  Electron Glass Dynamics , 2010, 1010.5767.

[56]  Zhong Qi-Shui,et al.  Fuzzy Modeling and Impulsive Control of a Memristor-Based Chaotic System , 2010 .

[57]  M. M. Glazov,et al.  Nonexponential spin relaxation in magnetic fields in quantum wells with random spin-orbit coupling , 2005 .

[58]  T. Berzina,et al.  Hybrid electronic device based on polyaniline-polyethyleneoxide junction , 2005 .

[59]  A. Zients Andy , 2003 .

[60]  Markus Janousch,et al.  Valence states of Cr and the insulator-to-metal transition in Cr-doped Sr Ti O 3 , 2005 .

[61]  Michael B. Partensky The elastic capacitor and its unusual properties , 2002 .

[62]  T. Hasegawa,et al.  Switching Property of Atomic Switch Controlled by Solid Electrochemical Reaction , 2006 .

[63]  M. Kozicki,et al.  Nanoscale memory elements based on solid-state electrolytes , 2005, IEEE Transactions on Nanotechnology.

[64]  Hong-Bay Chung,et al.  Phase-change characteristics of chalcogenide Ge1Se1Te2 thin films for use in nonvolatile memories , 2007 .

[65]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[66]  Dim-Lee Kwong,et al.  Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications , 2005 .

[67]  Florian Kronast,et al.  Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories. , 2010, Nano letters.

[68]  Mika Laiho,et al.  Stateful implication logic with memristors , 2009, 2009 IEEE/ACM International Symposium on Nanoscale Architectures.

[69]  T. Gilbert A Lagrangian Formulation of the Gyromagnetic Equation of the Magnetization Field , 1955 .

[70]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[71]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[72]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[73]  Sung-Mo Kang,et al.  Compact Models for Memristors Based on Charge-Flux Constitutive Relationships , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[74]  Massimiliano Di Ventra,et al.  Memristive model of amoeba learning. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[75]  H. Hwang,et al.  An electrically modifiable synapse array of resistive switching memory , 2009, Nanotechnology.

[76]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[77]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[78]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[79]  D.S.H. Chan,et al.  A flexible polymer memory device , 2007 .

[80]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[81]  I. Pavlov Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex , 1929 .

[82]  D. Stewart,et al.  The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits , 2005 .

[83]  Daniele Ielmini,et al.  Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices , 2007 .

[84]  Jairo Sinova,et al.  Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. , 2005 .

[85]  S. Möller,et al.  A polymer/semiconductor write-once read-many-times memory , 2003, Nature.

[86]  P. Krzysteczko,et al.  Memristive switching of MgO based magnetic tunnel junctions , 2009, 0907.3684.

[87]  L. Chua Nonlinear circuit foundations for nanodevices. I. The four-element torus , 2003 .

[88]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[89]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[90]  Franco Nori,et al.  Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control , 2009, 0902.2526.

[91]  Sung-Yool Choi,et al.  Microscopic origin of bipolar resistive switching of nanoscale titanium oxide thin films , 2009 .

[92]  A. A. BOKOV,et al.  FRONTIERS OF FERROELECTRICITY , 2022 .

[93]  M. Ventra,et al.  Colloquium: Physical approaches to DNA sequencing and detection , 2007, 0708.2724.

[94]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[95]  R. Williams,et al.  Analog memory capacitor based on field-configurable ion-doped polymers , 2009 .

[96]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[97]  S. Ramanathan,et al.  Nanoscale imaging and control of resistance switching in VO2 at room temperature , 2010 .

[98]  K. A. Jose,et al.  RF MEMS and Their Applications , 2002 .

[99]  Alexander M. Grishin,et al.  Giant resistance switching in metal-insulator-manganite junctions : Evidence for Mott transition , 2005 .

[100]  Yike Guo,et al.  Delayed Switching in Memristors and Memristive Systems , 2010, IEEE Electron Device Letters.

[101]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[102]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[103]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[104]  A. M. Bratkovsky,et al.  Polaronic memory resistors strongly coupled to electrodes , 2009 .

[105]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[106]  Tae-Wook Kim,et al.  Memory characteristics of a self-assembled monolayer of Pt nanoparticles as a charge trapping layer , 2008, Nanotechnology.

[107]  Massimiliano Di Ventra,et al.  Ionic memcapacitive effects in nanopores. , 2010, Nano letters.

[108]  P. Kelly,et al.  Non-collinear magnetoelectronics , 2006, cond-mat/0602151.

[109]  M. Häusser The Hodgkin-Huxley theory of the action potential , 2000, Nature Neuroscience.

[110]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[111]  Gabriel M. Rebeiz RF MEMS: Theory, Design and Technology , 2003 .

[112]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[113]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[114]  Taher Daud,et al.  Solid‐state thin‐film memistor for electronic neural networks , 1990 .

[115]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[116]  M. Di Ventra,et al.  Spin blockade at semiconductor/ferromagnet junctions , 2007, cond-mat/0701678.

[117]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[118]  H. L. Kwok,et al.  Understanding negative capacitance effect using an equivalent resistor‐capacitor circuit , 2008 .

[119]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[120]  Tatiana Berzina,et al.  A functional polymeric material based on hybrid electrochemically controlled junctions , 2008 .

[121]  J. Suehle,et al.  A Flexible Solution-Processed Memristor , 2009, IEEE Electron Device Letters.

[122]  P. Vontobel,et al.  Writing to and reading from a nano-scale crossbar memory based on memristors , 2009, Nanotechnology.

[123]  H. Hwang,et al.  Resistance switching of copper doped MoOx films for nonvolatile memory applications , 2007 .

[124]  Sang-Hyun Hong,et al.  High‐Performance Programmable Memory Devices Based on Hyperbranched Copper Phthalocyanine Polymer Thin Films , 2008 .

[125]  I. Pavlov,et al.  Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex , 2010, Annals of Neurosciences.

[126]  J. Pelesko,et al.  Modeling MEMS and NEMS , 2002 .

[127]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[128]  J. Crowley,et al.  Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. , 1973, Biophysical journal.

[129]  Zhangcai Huang,et al.  Memristor Model for SPICE , 2010, IEICE Trans. Electron..

[130]  T. Matsuo,et al.  Analysis of a hysteretic circuit containing an iron-cored inductor and a semiconductor switch , 1999 .

[131]  Changqing Xie,et al.  Organic nonpolar nonvolatile resistive switching in poly(3,4-ethylene-dioxythiophene): Polystyrenesulfonate thin film , 2009 .

[132]  H. Iwasaki,et al.  Completely Erasable Phase Change Optical Disc II: Application of Ag-In-Sb-Te Mixed-Phase System for Rewritable Compact Disc Compatible with CD-Velocity and Double CD-Velocity , 1993 .

[133]  M. Vroubel,et al.  Integrated tunable magnetic RF inductor , 2004, IEEE Electron Device Letters.

[134]  Dae-Hwang Kim,et al.  Three-dimensional simulation model of switching dynamics in phase change random access memory cells , 2007 .

[135]  Jeong Yong Lee,et al.  Ultralarge capacitance-voltage hysteresis and charge retention characteristics in metal oxide semiconductor structure containing nanocrystals deposited by ion-beam-assisted electron beam deposition , 2001 .

[136]  JinPyo Hong,et al.  Nonvolatile Unipolar and Bipolar Resistive SwitchingCharacteristics in Co-doped TiO$_{2}$ Thin Films with DifferentCompliance Currents , 2009 .

[137]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[138]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[139]  A. W. Overhauser Sign of thecosφconductance term in Josephson tunneling , 2000 .

[140]  M. Rozenberg,et al.  Mechanism for bipolar resistive switching in transition-metal oxides , 2010, 1001.0703.

[141]  Rainer Waser,et al.  Abnormal bipolar-like resistance change behavior induced by symmetric electroforming in Pt/TiO2/Pt resistive switching cells , 2009, Nanotechnology.

[142]  S Lupi,et al.  Evidence of a pressure-induced metallization process in monoclinic VO2. , 2007, Physical review letters.

[143]  Ohyun Kim,et al.  Unipolar Switching Characteristics of Nonvolatile Memory Devices Based on Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Thin Films , 2009 .

[144]  L. Chua Memristor-The missing circuit element , 1971 .

[145]  Marcelo Messias,et al.  Hopf bifurcation from Lines of Equilibria without Parameters in Memristor oscillators , 2010, Int. J. Bifurc. Chaos.

[146]  D. N. Basov,et al.  Electrodynamics of the vanadium oxides VO2 and V2O3 , 2008, 0803.2739.

[147]  M. Blencowe Nanoelectromechanical systems , 2005, cond-mat/0502566.

[148]  Shamik Das,et al.  Performance simulation and analysis of a CMOS/nano hybrid nanoprocessor system , 2009, Nanotechnology.

[149]  M. Ventra,et al.  Microscopic current dynamics in nanoscale junctions , 2007, cond-mat/0701634.

[150]  N. Wu,et al.  Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. , 2006, Physical Review Letters.

[151]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[152]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[153]  Wei Liu,et al.  Synthesis and electron storage characteristics of isolated silver nanodots on/embedded in Al , 2004 .

[154]  Tatiana Berzina,et al.  Optimization of an organic memristor as an adaptive memory element , 2009 .

[155]  S. Sivoththaman,et al.  A Tunable RF MEMS Inductor on Silicon Incorporating an Amorphous Silicon Bimorph in a Low-Temperature Process , 2006, IEEE Electron Device Letters.

[156]  M. J. Rozenberg,et al.  A model for non-volatile electronic memory devices with strongly correlated materials , 2005 .

[157]  Rene Lopez,et al.  Size effects in the structural phase transition of VO2 nanoparticles , 2002 .

[158]  S. O. Park,et al.  Electrical observations of filamentary conductions for the resistive memory switching in NiO films , 2006 .

[159]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[160]  R. McCreery,et al.  Solid-State Electrochemistry in Molecule/TiO 2 Molecular Heterojunctions as the Basis of the TiO 2 "Memristor" , 2009 .

[161]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[162]  Masateru Taniguchi,et al.  Resistive switching multistate nonvolatile memory effects in a single cobalt oxide nanowire. , 2010, Nano letters.

[163]  Andrew B. Kahng,et al.  A power-constrained MPU roadmap for the International Technology Roadmap for Semiconductors (ITRS) , 2009, 2009 International SoC Design Conference (ISOCC).

[164]  Thierry Baron,et al.  Electronic properties of Ge nanocrystals for non volatile memory applications , 2006 .

[165]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[166]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[167]  Michal M. Okoniewski,et al.  A Tunable RF MEMS Inductor , 2004, 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS'04).

[168]  B. Josephson Possible new effects in superconductive tunnelling , 1962 .

[169]  Tx,et al.  Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface , 2002, cond-mat/0212464.

[170]  H. Akinaga,et al.  Switchable rectifier built with Pt/TiOx/Pt trilayer , 2009 .

[171]  Massimiliano Di Ventra,et al.  Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements , 2010, Proceedings of the IEEE.

[172]  Taek Sung Lee,et al.  Bias polarity dependence of a phase change memory with a Ge-doped SbTe: A method for multilevel programing , 2008 .

[173]  Ricardo Riaza First order devices, hybrid memristors, and the frontiers of nonlinear circuit theory , 2010, 1010.0123.

[174]  Dalibor Biolek,et al.  Mutator for transforming memristor into memcapacitor , 2010 .

[175]  M. Rozenberg,et al.  Nonvolatile memory with multilevel switching: a basic model. , 2004, Physical review letters.

[176]  H. Akinaga,et al.  Resistance switching in the metal deficient-type oxides: NiO and CoO , 2007 .

[177]  S. Benderli,et al.  On SPICE macromodelling of TiO 2 memristors , 2009 .

[178]  M. H. Pilkuhn,et al.  Capacitance-voltage spectroscopy of silicon nanodots , 2005 .

[179]  P. M. Echternach,et al.  Nanomechanical measurements of a superconducting qubit , 2009, Nature.

[180]  Ivan K Schuller,et al.  Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions. , 2008, Physical review letters.

[182]  Y. Pershin,et al.  Bistable Nonvolatile Elastic-Membrane Memcapacitor Exhibiting a Chaotic Behavior , 2011, IEEE Transactions on Electron Devices.

[183]  Rainer Waser,et al.  Faradaic currents during electroforming of resistively switching Ag-Ge-Se type electrochemical metallization memory cells. , 2009, Physical chemistry chemical physics : PCCP.

[184]  Zhen Yan,et al.  Reversible resistance switching in La0.225Pr0.4Ca0.375MnO3: The Joule-heat-assisted phase transition , 2009 .

[185]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[186]  H. Eugene Stanley,et al.  Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the Barkhausen effect , 1998 .

[187]  Shangqing Liu,et al.  Electric-pulse-induced capacitance change effect in perovskite oxide thin films , 2006 .

[188]  K. Sonoda,et al.  A Compact Model of Phase-Change Memory Based on Rate Equations of Crystallization and Amorphization , 2008, IEEE Transactions on Electron Devices.

[189]  G. A. de Wijs,et al.  The continuing drama of the half-metal/semiconductor interface , 2006 .

[190]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[191]  Jae Eun Jang,et al.  Nanoscale memory cell based on a nanoelectromechanical switched capacitor. , 2008, Nature nanotechnology.

[192]  H. Ehrke,et al.  Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. , 2007, Physical review letters.

[193]  Massimiliano Di Ventra,et al.  Emulation of floating memcapacitors and meminductors using current conveyors , 2011 .

[194]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[195]  M. Ventra Electrical Transport in Nanoscale Systems , 2008 .

[196]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[197]  K.J.S. Cave,et al.  MOS (Metal Oxide Semiconductor) Physics and Technology , 1983 .

[198]  J. C. Kieffer,et al.  Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale , 2004, cond-mat/0403214.

[199]  K. Y. Tong,et al.  Memory effect and retention property of Ge nanocrystal embedded Hf-aluminate high-k gate dielectric , 2006 .

[200]  D. Ielmini,et al.  Modeling of Set/Reset Operations in NiO-Based Resistive-Switching Memory Devices , 2009, IEEE Transactions on Electron Devices.

[201]  Toshiaki Endoh,et al.  Ge nanocrystals in SiO2 films , 1997 .

[202]  Ivan K. Schuller,et al.  First-order reversal curve measurements of the metal-insulator transition in VO 2 : Signatures of persistent metallic domains , 2009 .

[203]  Yiran Chen,et al.  Spintronic Memristor Temperature Sensor , 2010, IEEE Electron Device Letters.

[204]  S. Raoux Phase Change Materials , 2009 .

[205]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[206]  You Yin,et al.  Multilevel Storage in Lateral Top-Heater Phase-Change Memory , 2008, IEEE Electron Device Letters.

[207]  R Stanley Williams,et al.  Molecular dynamics simulations of oxide memory resistors (memristors) , 2010, Nanotechnology.

[208]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[209]  Jie Zhang,et al.  Printed flexible memory devices using copper phthalocyanine , 2010 .

[210]  M. Roukes Nanoelectromechanical Systems , 2000, cond-mat/0008187.

[211]  Kin Leong Pey,et al.  The nature of dielectric breakdown , 2008 .

[212]  Yan Zhu,et al.  Numerical investigation of transient capacitances of Ge∕Si heteronanocrystal memories in retention mode , 2007 .

[213]  Jinhyung Cho,et al.  Charge retention characteristics in a metal-insulator-semiconductor capacitor containing Ge nanocrystals , 2002 .

[214]  M Quintero,et al.  Mechanism of electric-pulse-induced resistance switching in manganites. , 2007, Physical review letters.

[215]  F. Zhuge,et al.  Nonvolatile resistive switching memory based on amorphous carbon , 2010 .

[216]  M. Wuttig,et al.  Assessment of Se based phase change alloy as a candidate for non-volatile electronic memory applications , 2005 .

[217]  H.G.A. Huizing,et al.  Characterization of dielectric charging in RF MEMS capacitive switches , 2006, 2006 IEEE International Conference on Microelectronic Test Structures.

[218]  Gerhard Müller,et al.  A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control , 2007, IEEE Journal of Solid-State Circuits.

[219]  M. Sapoff,et al.  Theory and application of self-heated thermistors , 1963 .

[220]  Stuart A. Wolf,et al.  Relaxation dynamics of the metal-semiconductor transition in VO2 thin films , 2010 .

[221]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[222]  Sallee Klein,et al.  Memristive Adaptive Filters , 2010 .

[223]  Byung-Gyu Chae,et al.  Monoclinic and correlated metal phase in VO(2) as evidence of the Mott transition: coherent phonon analysis. , 2006, Physical review letters.

[224]  L. Berger,et al.  Low‐field magnetoresistance and domain drag in ferromagnets , 1978 .

[225]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[226]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[227]  A. Bratkovsky,et al.  Spintronic effects in metallic, semiconductor, metal–oxide and metal–semiconductor heterostructures , 2008 .

[228]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[229]  Dmitri B Strukov,et al.  Four-dimensional address topology for circuits with stacked multilayer crossbar arrays , 2009, Proceedings of the National Academy of Sciences.

[230]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[231]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[232]  Toshiyuki Nakagaki,et al.  Amoebae anticipate periodic events. , 2008, Physical review letters.

[233]  Eyal Buks,et al.  Decoherence and recoherence in a vibrating rf SQUID , 2006 .

[234]  S. Ovshinsky Optical Cognitive Information Processing – A New Field , 2004 .

[235]  Dalibor Biolek,et al.  PSPICE modeling of meminductor , 2011 .

[236]  Ya-Chin King,et al.  Charge-trap memory device fabricated by oxidation of Si/sub 1-x/Ge/sub x/ , 2001 .

[237]  Siegfried Gottwald,et al.  Fuzzy Sets and Fuzzy Logic , 1993 .

[238]  J. P. Remeika,et al.  Structural Aspects of the Metal-Insulator Transitions in Cr-Doped V O 2 , 1972 .

[239]  Massimiliano Di Ventra,et al.  Memristive circuits simulate memcapacitors and meminductors , 2009, 0910.1583.

[240]  Byung Joon Choi,et al.  Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition , 2005 .

[241]  Narayanan Balasubramanian,et al.  Formation of Ge nanocrystals in HfAlO high-k dielectric and application in memory device , 2004 .

[242]  S. Kaech,et al.  Culturing hippocampal neurons , 2006, Nature Protocols.

[243]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[244]  J. F. Webb,et al.  One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F2 memory cell (F=0.15 μm) , 2003 .

[245]  Ohyun Kim,et al.  Bipolar switching characteristics of nonvolatile memory devices based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) thin film , 2008 .

[246]  Elvira Fortunato,et al.  Metal-ferroelectric thin film devices , 2002 .

[247]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[248]  A N Cleland,et al.  Superconducting qubit storage and entanglement with nanomechanical resonators. , 2004, Physical review letters.

[249]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[250]  Jamie D. Phillips,et al.  Hysteretic metal–ferroelectric– semiconductor capacitors based on PZT/ZnO heterostructures , 2007 .

[251]  Y. Tokura,et al.  Strong electron correlation effects in non-volatile electronic memory devices , 2005, Symposium Non-Volatile Memory Technology 2005..

[252]  Tatiana Berzina,et al.  Polymeric elements for adaptive networks , 2007 .

[253]  Dong‐Won Kim,et al.  Electrical Characteristics of Metal–Ferroelectric–Semiconductor Structures Based on Poly(vinylidene fluoride) , 2007 .

[254]  A. MacDonald,et al.  Thermally assisted current-driven domain-wall motion. , 2006, Physical review letters.

[255]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[256]  R. Waser,et al.  Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt ∕ TiO2 ∕ Pt Stack , 2007 .

[257]  M. E. Flatte,et al.  Electric-field dependent spin diffusion and spin injection into semiconductors , 2002 .

[258]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[259]  Zhiyong Li,et al.  Ionic/Electronic Hybrid Materials Integrated in a Synaptic Transistor with Signal Processing and Learning Functions , 2010, Advanced materials.

[260]  James M Tour,et al.  Reversible bistable switching in nanoscale thiol-substituted oligoaniline molecular junctions. , 2005, Nano letters.

[261]  Masatoshi Imada,et al.  Metal-insulator transitions , 1998 .

[262]  M. Wuttig,et al.  Sb-Se-based phase-change memory device with lower power and higher speed operations , 2006, IEEE Electron Device Letters.

[263]  Dalibor Biolek,et al.  SPICE modeling of memristive, memcapacitative and meminductive systems , 2009, 2009 European Conference on Circuit Theory and Design.

[264]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[265]  K.K. Likharev,et al.  Reconfigurable Hybrid CMOS/Nanodevice Circuits for Image Processing , 2007, IEEE Transactions on Nanotechnology.

[266]  D. N. Basov,et al.  Correlated metallic state of vanadium dioxide , 2006 .

[267]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[268]  R. Waser,et al.  Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories , 2009 .

[269]  Hai Helen Li,et al.  Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion , 2009, IEEE Electron Device Letters.

[270]  D. Werner,et al.  Passive switching of electromagnetic devices with memristors , 2010 .

[271]  R. Williams,et al.  Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. , 2009, Small.

[272]  R. Waser,et al.  Mechanism for bipolar switching in a Pt / TiO 2 / Pt resistive switching cell , 2009 .

[273]  D. Ohlberg,et al.  One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoimprint lithography , 2005 .

[274]  Rosario Fazio,et al.  Resonant coupling of a SQUID to a mechanical resonator , 2010 .

[275]  Xingxiang Zhou,et al.  Nonlinear coupling of nanomechanical resonators to josephson quantum circuits. , 2006, Physical review letters.

[276]  V. M. Lubecke,et al.  Self-assembling MEMS variable and fixed RF inductors , 2001 .

[277]  Vladimir Ermolov,et al.  Microelectromechanical capacitors for RF applications , 2002 .

[278]  Dalibor Biolek,et al.  SPICE modelling of memcapacitor , 2010 .

[279]  M. Di Ventra,et al.  Frequency doubling and memory effects in the spin Hall effect , 2009 .

[280]  Ricardo Riaza,et al.  First Order Mem-Circuits: Modeling, Nonlinear Oscillations and Bifurcations , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[281]  Ute Drechsler,et al.  Transition-metal-oxide-based resistance-change memories , 2008, IBM J. Res. Dev..

[282]  Mohammad Javad Sharifi,et al.  General SPICE Models for Memristor and Application to Circuit Simulation of Memristor-Based Synapses and Memory Cells , 2010, J. Circuits Syst. Comput..

[283]  Andrew G. Glen,et al.  APPL , 2001 .

[284]  J. Simmons,et al.  New conduction and reversible memory phenomena in thin insulating films , 1967, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[285]  Stefan K. Lai,et al.  Flash memories: Successes and challenges , 2008, IBM J. Res. Dev..

[286]  Bocheng Bao,et al.  Steady periodic memristor oscillator with transient chaotic behaviours , 2010 .