Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics

We fabricated stretchable molybdenum disulfide thin-film transistors (MoS2 TFTs) on poly(dimethylsiloxane) substrates using ion gels as elastic gate dielectrics. The TFTs exhibited an electron mobility of 1.40 cm2/(V·s) and an on/off current ratio of 104 with a notably low threshold voltage (∼1 V). Furthermore, our MoS2 TFTs operated at a mechanical strain of 5% without significant degradation of their electrical properties. These results demonstrate the potential for using MoS2 films for stretchable electronics.

[1]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[2]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[3]  A. M. van der Zande,et al.  Softened elastic response and unzipping in chemical vapor deposition graphene membranes. , 2011, Nano letters.

[4]  Byung-Sung Kim,et al.  Stretchable, Transparent Zinc Oxide Thin Film Transistors , 2010 .

[5]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.

[6]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[7]  J. Rogers,et al.  Stretchable graphene transistors with printed dielectrics and gate electrodes. , 2011, Nano letters.

[8]  S. Hotta,et al.  Ambipolar Organic Single‐Crystal Transistors Based on Ion Gels , 2012, Advanced materials.

[9]  Wei Zhang,et al.  Printed Sub‐2 V Gel‐Electrolyte‐Gated Polymer Transistors and Circuits , 2010 .

[10]  T. Someya,et al.  Stretchable, Large‐area Organic Electronics , 2010, Advanced materials.

[11]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[12]  Zhiyuan Zeng,et al.  An effective method for the fabrication of few-layer-thick inorganic nanosheets. , 2012, Angewandte Chemie.

[13]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[15]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[16]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[17]  J. Shan,et al.  Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. , 2013, Nano letters.

[18]  Timothy P. Lodge,et al.  Ion Gel-Gated Polymer Thin-Film Transistors: Operating Mechanism and Characterization of Gate Dielectric Capacitance, Switching Speed, and Stability , 2009 .

[19]  T. Someya,et al.  Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[21]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[22]  Rui Zhang,et al.  Strain dependent resistance in chemical vapor deposition grown graphene , 2011 .

[23]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[24]  H. Takagi,et al.  Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2 , 2012 .

[25]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[26]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[27]  Masayoshi Watanabe,et al.  Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. , 2005, Journal of the American Chemical Society.

[28]  Wei Zhang,et al.  Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks. , 2010, ACS nano.

[29]  T. Lodge,et al.  High‐Capacitance Ion Gel Gate Dielectrics with Faster Polarization Response Times for Organic Thin Film Transistors , 2008 .

[30]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[31]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[32]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[33]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[34]  Patrick S Doyle,et al.  Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Stéphanie P. Lacour,et al.  Silicone substrate with in situ strain relief for stretchable thin-film transistors , 2011 .

[36]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[37]  Jiyoul Lee,et al.  Ion gel gated polymer thin-film transistors. , 2007, Journal of the American Chemical Society.

[38]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[39]  Daniel Wolverson,et al.  Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2 , 2013 .

[40]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.