ABC model selection for spatial extremes models applied to South Australian maximum temperature data

Max-stable processes are a common choice for modelling spatial extreme data as they arise naturally as the infinite-dimensional generalisation of multivariate extreme value theory. Statistical inference for such models is complicated by the intractability of the multivariate density function. Nonparametric, composite likelihood-based, and Bayesian approaches have been proposed to address this difficulty. More recently, a simulation-based approach using approximate Bayesian computation (ABC) has been employed for estimating parameters of max-stable models. ABC algorithms rely on the evaluation of discrepancies between model simulations and the observed data rather than explicit evaluations of computationally expensive or intractable likelihood functions. The use of an ABC method to perform model selection for max-stable models is explored. Three max-stable models are regarded: the extremal- model with either a Whittle-Matern or a powered exponential covariance function, and the Brown–Resnick model with power variogram. In addition, the non-extremal Student- copula model with a Whittle-Matern or a powered exponential covariance function is also considered. The method is applied to annual maximum temperature data from 25 weather stations dispersed around South Australia.

[1]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[2]  Jonathan A. Tawn,et al.  A dependence measure for multivariate and spatial extreme values: Properties and inference , 2003 .

[3]  M. Schlather,et al.  Estimation of Hüsler–Reiss distributions and Brown–Resnick processes , 2012, 1207.6886.

[4]  C. Varin On composite marginal likelihoods , 2008 .

[5]  Paul Fearnhead,et al.  On the Asymptotic Efficiency of Approximate Bayesian Computation Estimators , 2015, 1506.03481.

[6]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[7]  M. Blum Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.

[8]  Richard L. Smith,et al.  MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .

[9]  Anthony C. Davison,et al.  Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures , 2015, 1506.07836.

[10]  David Welch,et al.  Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.

[11]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[12]  Conrad Sanderson,et al.  RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..

[13]  Marco Oesting,et al.  Exact simulation of max-stable processes. , 2015, Biometrika.

[14]  Richard L. Smith,et al.  Approximate Bayesian computing for spatial extremes , 2011, Comput. Stat. Data Anal..

[15]  Kirstin Strokorb,et al.  An exceptional max-stable process fully parameterized by its extremal coefficients , 2015, 1504.03459.

[16]  M. Parlange,et al.  Statistics of extremes in hydrology , 2002 .

[17]  Jean-Marie Cornuet,et al.  ABC model choice via random forests , 2014, 1406.6288.

[18]  Laurens de Haan,et al.  Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.

[19]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[20]  Mathieu Ribatet,et al.  Spatial extremes: Max-stable processes at work , 2013 .

[21]  Scott A. Sisson,et al.  Modelling extremes using approximate Bayesian Computation , 2014, 1411.1451.

[22]  H. Joe Multivariate models and dependence concepts , 1998 .

[23]  Jonathan A. Tawn,et al.  Exploiting occurrence times in likelihood inference for componentwise maxima , 2005 .

[24]  Paul Fearnhead,et al.  Semi-automatic selection of summary statistics for ABC model choice , 2013, Statistical applications in genetics and molecular biology.

[25]  R. Nelsen An Introduction to Copulas , 1998 .

[26]  Joseph Glaz,et al.  Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions , 1995 .

[27]  Kirstin Strokorb,et al.  Tail correlation functions of max-stable processes , 2015 .

[28]  Erlis Ruli,et al.  Approximate Bayesian computation with composite score functions , 2013, Stat. Comput..

[29]  Ali S. Hadi,et al.  Extreme Value and Related Models with Applications in Engineering and Science , 2004 .

[30]  J. Møller Discussion on the paper by Feranhead and Prangle , 2012 .

[31]  Xing Ju Lee,et al.  Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets , 2015, Biometrics.

[32]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[33]  Dennis Prangle,et al.  Lazy ABC , 2014, Stat. Comput..

[34]  Christian P Robert,et al.  Lack of confidence in approximate Bayesian computation model choice , 2011, Proceedings of the National Academy of Sciences.

[35]  Anthony C. Davison,et al.  Spatial modeling of extreme snow depth , 2011, 1111.7091.

[36]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[37]  David T. Frazier,et al.  Asymptotic properties of approximate Bayesian computation , 2016, Biometrika.

[38]  Erwan Koch,et al.  Tools and models for the study of some spatial and network risks: application to climate extremes and contagion in finance , 2015 .

[39]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[40]  Simon N. Wood,et al.  Soap film smoothing , 2008 .

[41]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[42]  S. Coles,et al.  Inference for Stereological Extremes , 2007 .

[43]  Jun Yan,et al.  Extreme Value Modeling and Risk Analysis : Methods and Applications , 2015 .

[44]  J. Tawn,et al.  Efficient inference for spatial extreme value processes associated to log-Gaussian random functions , 2014 .

[45]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[46]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[47]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[48]  Thomas Opitz,et al.  Efficient inference and simulation for elliptical Pareto processes , 2013, 1401.0168.

[49]  A. McNeil,et al.  The t Copula and Related Copulas , 2005 .

[50]  J.-M. Marin,et al.  Relevant statistics for Bayesian model choice , 2011, 1110.4700.

[51]  Markus Hainy,et al.  Likelihood-free simulation-based optimal design with an application to spatial extremes , 2015, Stochastic Environmental Research and Risk Assessment.

[52]  Paul Marjoram,et al.  Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Marco Oesting,et al.  Bayesian inference for multivariate extreme value distributions , 2016, 1611.05602.

[54]  Dirk Eddelbuettel,et al.  Rcpp: Seamless R and C++ Integration , 2011 .

[55]  P. Naveau,et al.  Variograms for spatial max-stable random fields , 2006 .

[56]  Mark M. Tanaka,et al.  Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.

[57]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[58]  T. Opitz,et al.  Extremal tt processes: Elliptical domain of attraction and a spectral representation , 2012, J. Multivar. Anal..

[59]  Paul Fearnhead,et al.  Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .

[60]  Marco Oesting,et al.  Simulation of Max-Stable Processes , 2015 .

[61]  A. Davison,et al.  Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.

[62]  James O. Ramsay,et al.  Spatial spline regression models , 2013 .

[63]  J. Hüsler Maxima of normal random vectors: between independence and complete dependence , 1989 .

[64]  A. B. Dieker,et al.  Exact simulation of Brown-Resnick random fields at a finite number of locations , 2014, 1406.5624.

[65]  Mathieu Ribatet,et al.  Probabilities of Concurrent Extremes , 2015, Journal of the American Statistical Association.

[66]  Sidney I. Resnick,et al.  Extreme values of independent stochastic processes , 1977 .

[67]  Laurens de Haan,et al.  Spatial extremes: Models for the stationary case , 2006 .

[68]  C C Drovandi,et al.  Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.