ABC model selection for spatial extremes models applied to South Australian maximum temperature data
暂无分享,去创建一个
Anthony N. Pettitt | Christopher C. Drovandi | Xing Ju Lee | Markus Hainy | James P. McKeone | J. P. McKeone | A. Pettitt | C. Drovandi | Markus Hainy | X. Lee
[1] Janet E. Heffernan,et al. Dependence Measures for Extreme Value Analyses , 1999 .
[2] Jonathan A. Tawn,et al. A dependence measure for multivariate and spatial extreme values: Properties and inference , 2003 .
[3] M. Schlather,et al. Estimation of Hüsler–Reiss distributions and Brown–Resnick processes , 2012, 1207.6886.
[4] C. Varin. On composite marginal likelihoods , 2008 .
[5] Paul Fearnhead,et al. On the Asymptotic Efficiency of Approximate Bayesian Computation Estimators , 2015, 1506.03481.
[6] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[7] M. Blum. Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.
[8] Richard L. Smith,et al. MAX-STABLE PROCESSES AND SPATIAL EXTREMES , 2005 .
[9] Anthony C. Davison,et al. Bayesian inference for the Brown-Resnick process, with an application to extreme low temperatures , 2015, 1506.07836.
[10] David Welch,et al. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.
[11] A. Davison,et al. Statistical Modeling of Spatial Extremes , 2012, 1208.3378.
[12] Conrad Sanderson,et al. RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..
[13] Marco Oesting,et al. Exact simulation of max-stable processes. , 2015, Biometrika.
[14] Richard L. Smith,et al. Approximate Bayesian computing for spatial extremes , 2011, Comput. Stat. Data Anal..
[15] Kirstin Strokorb,et al. An exceptional max-stable process fully parameterized by its extremal coefficients , 2015, 1504.03459.
[16] M. Parlange,et al. Statistics of extremes in hydrology , 2002 .
[17] Jean-Marie Cornuet,et al. ABC model choice via random forests , 2014, 1406.6288.
[18] Laurens de Haan,et al. Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.
[19] S. Padoan,et al. Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.
[20] Mathieu Ribatet,et al. Spatial extremes: Max-stable processes at work , 2013 .
[21] Scott A. Sisson,et al. Modelling extremes using approximate Bayesian Computation , 2014, 1411.1451.
[22] H. Joe. Multivariate models and dependence concepts , 1998 .
[23] Jonathan A. Tawn,et al. Exploiting occurrence times in likelihood inference for componentwise maxima , 2005 .
[24] Paul Fearnhead,et al. Semi-automatic selection of summary statistics for ABC model choice , 2013, Statistical applications in genetics and molecular biology.
[25] R. Nelsen. An Introduction to Copulas , 1998 .
[26] Joseph Glaz,et al. Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions , 1995 .
[27] Kirstin Strokorb,et al. Tail correlation functions of max-stable processes , 2015 .
[28] Erlis Ruli,et al. Approximate Bayesian computation with composite score functions , 2013, Stat. Comput..
[29] Ali S. Hadi,et al. Extreme Value and Related Models with Applications in Engineering and Science , 2004 .
[30] J. Møller. Discussion on the paper by Feranhead and Prangle , 2012 .
[31] Xing Ju Lee,et al. Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets , 2015, Biometrics.
[32] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[33] Dennis Prangle,et al. Lazy ABC , 2014, Stat. Comput..
[34] Christian P Robert,et al. Lack of confidence in approximate Bayesian computation model choice , 2011, Proceedings of the National Academy of Sciences.
[35] Anthony C. Davison,et al. Spatial modeling of extreme snow depth , 2011, 1111.7091.
[36] J. Nocedal,et al. A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..
[37] David T. Frazier,et al. Asymptotic properties of approximate Bayesian computation , 2016, Biometrika.
[38] Erwan Koch,et al. Tools and models for the study of some spatial and network risks: application to climate extremes and contagion in finance , 2015 .
[39] D. Balding,et al. Approximate Bayesian computation in population genetics. , 2002, Genetics.
[40] Simon N. Wood,et al. Soap film smoothing , 2008 .
[41] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[42] S. Coles,et al. Inference for Stereological Extremes , 2007 .
[43] Jun Yan,et al. Extreme Value Modeling and Risk Analysis : Methods and Applications , 2015 .
[44] J. Tawn,et al. Efficient inference for spatial extreme value processes associated to log-Gaussian random functions , 2014 .
[45] Eric P. Smith,et al. An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.
[46] Martin Schlather,et al. Models for Stationary Max-Stable Random Fields , 2002 .
[47] G. Molenberghs,et al. Models for Discrete Longitudinal Data , 2005 .
[48] Thomas Opitz,et al. Efficient inference and simulation for elliptical Pareto processes , 2013, 1401.0168.
[49] A. McNeil,et al. The t Copula and Related Copulas , 2005 .
[50] J.-M. Marin,et al. Relevant statistics for Bayesian model choice , 2011, 1110.4700.
[51] Markus Hainy,et al. Likelihood-free simulation-based optimal design with an application to spatial extremes , 2015, Stochastic Environmental Research and Risk Assessment.
[52] Paul Marjoram,et al. Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[53] Marco Oesting,et al. Bayesian inference for multivariate extreme value distributions , 2016, 1611.05602.
[54] Dirk Eddelbuettel,et al. Rcpp: Seamless R and C++ Integration , 2011 .
[55] P. Naveau,et al. Variograms for spatial max-stable random fields , 2006 .
[56] Mark M. Tanaka,et al. Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.
[57] M. Feldman,et al. Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.
[58] T. Opitz,et al. Extremal tt processes: Elliptical domain of attraction and a spectral representation , 2012, J. Multivar. Anal..
[59] Paul Fearnhead,et al. Constructing summary statistics for approximate Bayesian computation: semi‐automatic approximate Bayesian computation , 2012 .
[60] Marco Oesting,et al. Simulation of Max-Stable Processes , 2015 .
[61] A. Davison,et al. Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.
[62] James O. Ramsay,et al. Spatial spline regression models , 2013 .
[63] J. Hüsler. Maxima of normal random vectors: between independence and complete dependence , 1989 .
[64] A. B. Dieker,et al. Exact simulation of Brown-Resnick random fields at a finite number of locations , 2014, 1406.5624.
[65] Mathieu Ribatet,et al. Probabilities of Concurrent Extremes , 2015, Journal of the American Statistical Association.
[66] Sidney I. Resnick,et al. Extreme values of independent stochastic processes , 1977 .
[67] Laurens de Haan,et al. Spatial extremes: Models for the stationary case , 2006 .
[68] C C Drovandi,et al. Estimation of Parameters for Macroparasite Population Evolution Using Approximate Bayesian Computation , 2011, Biometrics.