Dependently typed functional programs and their proofs
暂无分享,去创建一个
[1] Philip Wadler,et al. Views: a way for pattern matching to cohabit with data abstraction , 1987, POPL '87.
[2] Robin Milner,et al. Principal type-schemes for functional programs , 1982, POPL '82.
[3] David J. Pym,et al. Proofs, search and computation in general logic , 1990 .
[4] Thierry Coquand,et al. Pattern Matching with Dependent Types , 1992 .
[5] Delphine Terrasse,et al. Encoding Natural Semantics in Coq , 1995, AMAST.
[6] Lawrence C. Paulson,et al. Constructing Recursion Operators in Intuitionistic Type Theory , 1986, J. Symb. Comput..
[7] Martin Strecker,et al. Interactive and Automated Proof Construction in Type Theory , 1998 .
[8] Eduardo Giménez,et al. Un calcul de constructions infinies et son application a la verification de systemes communicants , 1996 .
[9] John McCarthy,et al. A basis for a mathematical theory of computation, preliminary report , 1899, IRE-AIEE-ACM '61 (Western).
[10] Gérard P. Huet,et al. The Zipper , 1997, Journal of Functional Programming.
[11] Mathieu Jaume. Unification: a Case Study in Transposition of Formal Properties , 1997 .
[12] Gérard P. Huet,et al. Constructive category theory , 2000, Proof, Language, and Interaction.
[13] Zohar Manna,et al. Deductive Synthesis of the Unification Algorithm , 1981, Sci. Comput. Program..
[14] D. A. Turner,et al. Elementary Strong Functional Programming , 1995, FPLE.
[15] Healfdene Goguen. A typed operational semantics for type theory , 1994 .
[16] Eduardo Giménez,et al. Structural Recursive Definitions in Type Theory , 1998, ICALP.
[17] Martin Hofmann,et al. The groupoid model refutes uniqueness of identity proofs , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.
[18] Hugo Herbelin,et al. The Coq proof assistant : reference manual, version 6.1 , 1997 .
[19] John McCarthy,et al. A BASIS FOR A MATHEMATICAL THEORY OF COMPUTATION 1) , 2018 .
[20] Rod M. Burstall,et al. Explicit Environments , 1999, Fundam. Informaticae.
[21] M. Hofmann. Extensional concepts in intensional type theory , 1995 .
[22] Per Martin-Löf,et al. Intuitionistic type theory , 1984, Studies in proof theory.
[23] James Hook,et al. Substitution: A Formal Methods Case Study Using Monads and Transformations , 1994, Sci. Comput. Program..
[24] C. Paulin-Mohring. Définitions Inductives en Théorie des Types , 1996 .
[25] David J. Pym,et al. A Unification Algorithm for the lambda-Pi-Calculus , 1992, Int. J. Found. Comput. Sci..
[26] Christine Paulin-Mohring,et al. Inductive Definitions in the system Coq - Rules and Properties , 1993, TLCA.
[27] John Darlington,et al. A Transformation System for Developing Recursive Programs , 1977, J. ACM.
[28] Zhaohui Luo,et al. Computation and reasoning - a type theory for computer science , 1994, International series of monographs on computer science.
[29] Masako Takahashi,et al. Parallel reductions in λ-calculus (revised version) , 1992 .
[30] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[31] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[32] de Ng Dick Bruijn,et al. Telescopic Mappings in Typed Lambda Calculus , 1991, Inf. Comput..
[33] Bengt Nordström. Terminating general recursion , 1988, BIT Comput. Sci. Sect..
[34] R. M. BURSTALL. Inductively Defined Functions in Functional Programming Languages , 1987, J. Comput. Syst. Sci..
[35] Konrad Slind,et al. Function Definition in Higher-Order Logic , 1996, TPHOLs.
[36] J. Rouyer. Développement de l'algorithme d'unification dans le calcul des constructions avec types inductifs , 1992 .
[37] César A. Muñoz,et al. Dependent Types with Explicit Substitutiuons: A Meta-theoretical development , 1996, TYPES.
[38] Martin David Coen,et al. Interactive program derivation , 1992 .
[39] Dale Miller,et al. Unification Under a Mixed Prefix , 1992, J. Symb. Comput..
[40] Thierry Coquand,et al. Inductively defined types , 1988, Conference on Computer Logic.
[41] Magnus Carlsson,et al. An exercise in dependent types: A well-typed interpreter , 1999 .
[42] Lawrence C. Paulson,et al. Logic and computation - interactive proof with Cambridge LCF , 1987, Cambridge tracts in theoretical computer science.
[43] Lennart Augustsson,et al. Compiling Pattern Matching , 1985, FPCA.
[44] Gérard P. Huet,et al. A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..
[45] Lena Magnusson,et al. The implementation of ALF : a proof editor based on Martin-Löf's monomorphic type theory with explicit substitution , 1994 .
[46] Eduardo Giménez,et al. Codifying Guarded Definitions with Recursive Schemes , 1994, TYPES.
[47] Richard S. Bird,et al. de Bruijn notation as a nested datatype , 1999, Journal of Functional Programming.
[48] John C. Shepherdson,et al. Unfold/fold transformations of logic programs , 1992, Mathematical Structures in Computer Science.
[49] Frederick Valentine McBride. Computer aided manipulation of symbols , 1970 .
[50] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[51] Dale Miller,et al. A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..
[52] Marianne Simonot,et al. Automatizing Termination Proofs of Recursively Defined Functions , 1994, Theor. Comput. Sci..
[53] Erik Poll,et al. Pure Type Systems with Definitions , 1994, LFCS.
[54] Conor McBride,et al. Inverting Inductively Defined Relations in LEGO , 1996, TYPES.
[55] Robert Harper,et al. Type Checking, Universe Polymorphism, and Typical Ambiguity in the Calculus of Constructions (Draft) , 1989, TAPSOFT, Vol.2.
[56] Cristina Cornes,et al. Conception d'un langage de haut niveau de representation de preuves : recurrence par filtrage de motifs unification en presence de types inductifs primitifs synthese de lemmes d'inversion , 1997 .
[57] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[58] Keith L. Clark,et al. Negation as Failure , 1987, Logic and Data Bases.
[59] E Erik Poll. A programming logic based on type theory , 1994 .
[60] P. Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions , 1971 .
[61] John McCarthy,et al. Correctness of a compiler for arithmetic expressions , 1966 .
[62] Donald Sannella,et al. The definition of Extended ML , 1994 .
[63] Rod M. Burstall,et al. HOPE: An experimental applicative language , 1980, LISP Conference.
[64] E. Manes. Algebraic Theories in a Category , 1976 .
[65] Randy B. Pollack,et al. Incremental Changes in LEGO , 1994 .
[66] Thorsten Altenkirch,et al. Monadic Presentations of Lambda Terms Using Generalized Inductive Types , 1999, CSL.
[67] Robin Milner,et al. Definition of standard ML , 1990 .
[68] S. Lane. Categories for the Working Mathematician , 1971 .
[69] Rod M. Burstall,et al. Proving Properties of Programs by Structural Induction , 1969, Comput. J..
[70] Lennart Augustsson,et al. Cayenne—a language with dependent types , 1998, ICFP '98.