Microfabricated protein-containing poly(ethylene glycol) hydrogel arrays for biosensing

[1]  Paul S. Francis,et al.  Analytical methodology for the determination of urea: current practice and future trends , 2002 .

[2]  Frank V Bright,et al.  Pin-printed chemical sensor arrays for simultaneous multianalyte quantification. , 2002, Analytical chemistry.

[3]  V. Yadavalli,et al.  Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. , 2001, Langmuir : the ACS journal of surfaces and colloids.

[4]  D. S. Gill,et al.  Optical multibead arrays for simple and complex odor discrimination. , 2001, Analytical chemistry.

[5]  A. Axel,et al.  Mass transfer in rapidly photopolymerized poly(ethylene glycol) hydrogels used for chemical sensing , 2001 .

[6]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[7]  A. Russell,et al.  Photoimmobilization of organophosphorus hydrolase within a PEG-based hydrogel. , 1999, Biotechnology and bioengineering.

[8]  A. K. Singh,et al.  Development of sensors for direct detection of organophosphates. Part I: Immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. , 1999, Biosensors & bioelectronics.

[9]  Joseph S. Schoeniger,et al.  Development of sensors for direct detection of organophosphates.: Part II: sol–gel modified field effect transistor with immobilized organophosphate hydrolase , 1999 .

[10]  J. Wild,et al.  Poly(ethylene glycol) hydrogel-encapsulated fluorophore-enzyme conjugates for direct detection of organophosphorus neurotoxins. , 1999, Analytical chemistry.

[11]  P. Kingshott,et al.  Surfaces that resist bioadhesion , 1999 .

[12]  J. Kauer,et al.  Convergent, self-encoded bead sensor arrays in the design of an artificial nose. , 1999, Analytical chemistry.

[13]  D R Walt,et al.  Optical sensor arrays for odor recognition. , 1998, Biosensors & bioelectronics.

[14]  T A Dickinson,et al.  Current trends in 'artificial-nose' technology. , 1998, Trends in biotechnology.

[15]  Andreas Zell,et al.  Classical and modern algorithms for the evaluation of data from sensor-arrays , 1997 .

[16]  R Narayanaswamy,et al.  Fibre-optic pesticide biosensor based on covalently immobilized acetylcholinesterase and thymol blue. , 1997, Talanta: The International Journal of Pure and Applied Analytical Chemistry.

[17]  D. Walt,et al.  Fluorescence monitoring of the microenvironmental pH of highly charged polymers , 1997 .

[18]  Erika Kress-Rogers,et al.  Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment , 1996 .

[19]  J. Kauer,et al.  A chemical-detecting system based on a cross-reactive optical sensor array , 1996, Nature.

[20]  J. Kohn,et al.  Photocrosslinked hydrogels based on copolymers of poly(ethylene glycol) and lysine , 1994 .

[21]  P. Vadgama,et al.  Analytical Reviews in Clinical Biochemistry: The Estimation of Urea , 1992, Annals of clinical biochemistry.

[22]  R. Haugland,et al.  Spectral and photophysical studies of benzo[c]xanthene dyes: dual emission pH sensors. , 1991, Analytical biochemistry.

[23]  K R Rogers,et al.  Acetylcholinesterase fiber-optic biosensor for detection of anticholinesterases. , 1991, Fundamental and applied toxicology : official journal of the Society of Toxicology.

[24]  Chris A. Rowe-Taitt,et al.  Array biosensor for detection of biohazards. , 2000, Biosensors & bioelectronics.

[25]  A. Mulchandani,et al.  Organophosphorus Hydrolase‐Based Assay for Organophosphate Pesticides , 1999, Biotechnology progress.

[26]  F. Ligler,et al.  Array Biosensor: Optical and Fluidics Systems , 1999, Biomedical microdevices.

[27]  A. Rollins,et al.  A novel fiber-optic pH sensor incorporating carboxy SNAFL-2 and fluorescent wavelength-ratiometric detection. , 1998, Journal of biomedical materials research.