Design and modelling of a fixturing system for an optimal balancing of a part family

Dimensional errors of the parts of a part family cause the initial misplacing of the workpiece on the fixture affecting the final product quality. Even if the part is positioned correctly, the external machining forces and clamping load cause the part to deviate from this initial position depending upon that external load and the stiffness of the fixture. In this thesis, a comprehensive analytical model, consist of a kinematic and a mechanical model, of a 3-2-1 fixturing system is proposed. The kinematic model relocates the initially misplaced workpiece in the machine reference by the axial advancements of the six locators considering all the fixturing elements to be rigid. This repositioned part again displaces from the corrected position under the clamping and machining forces. The mechanical model calculates this displacement of the part considering the locators and clamps to be elastic. The rigid cuboid baseplate, used to precisely relocate the workpiece, is also considered elastic at the contacts with the locators. The non-linear behavior of the contact deformation is linearized by the converging the deformation of locators till the required precision is attained. Using small displacement hypothesis with zero friction at contacts, Lagrangian formulation enables us to calculate the rigid body displacement of the workpiece, deformation of each locator following minimum energy, and stiffness matrix and mechanical behavior of the fixturing system. This displacement of the workpiece is again compensated by the advancement of the six axial locators calculated through the kinematic model.

[1]  Hua Li,et al.  Computer aided fixture design: Recent research and trends , 2010, Comput. Aided Des..

[2]  Shreyes N. Melkote,et al.  Modeling of Workpiece Location Error Due to Fixture Geometric Error and Fixture-Workpiece Compliance , 2005 .

[3]  J. Kagami,et al.  Contact between a sphere and rough plates , 1983 .

[4]  J. Barbera,et al.  Contact mechanics , 1999 .

[5]  Anthony Chukwujekwu Okafor,et al.  Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics , 2000 .

[6]  Anjani Kumar,et al.  Analysis of geometric errors associated with five-axis machining centre in improving the quality of cam profile , 2003 .

[7]  José F. Hurtado,et al.  Improved Algorithm for Tolerance-Based Stiffness Optimization of Machining Fixtures , 2001 .

[8]  Shreyes N. Melkote,et al.  Improved workpiece location accuracy through fixture layout optimization , 1999 .

[9]  C. R. Liu,et al.  A literature survey of fixturedesign automation , 1990 .

[10]  Pierre Bourdet,et al.  A Study of Optimal-Criteria Identification Based on the Small-Displacement Screw Model , 1988 .

[11]  François Pruvot Conception et calcul des machines outils , 1993 .

[12]  Georges-Pierre Vailleau,et al.  Application d'une nouvelle conception d'architecture à une machine de mesure de résolution nanométrique , 2005 .

[13]  Gabriel Abba,et al.  Approximate Analytical Model for Hertzian Elliptical Contact Problems , 2006 .

[14]  Joe Cecil,et al.  Computer-Aided Fixture Design – A Review and Future Trends , 2001 .

[15]  M. Bahrami Modeling of Thermal Joint Resistance for Sphere-Flat Contacts in a Vacuum , 2004 .

[16]  Yasuhiro Kakinuma,et al.  Development of Fixture Devices for Thin and Compliant Workpieces , 2005 .

[17]  Michael Yu Wang,et al.  Tolerance Analysis for Fixture Layout Design , 2002 .

[18]  Yizhen Lin,et al.  A GENERIC KINEMATIC ERROR MODEL FOR MACHINE TOOLS , 1999 .

[19]  David Lesage,et al.  Un modèle dynamique de spécifications d'ingénierie basé sur une approche de géométrie variationnelle , 2002 .

[20]  Gideon Halevi,et al.  Principles of Process Planning: A logical approach , 2012 .

[21]  Luc Houpert,et al.  An Engineering Approach to Hertzian Contact Elasticity—Part I , 2001 .

[22]  Chong Nam Chu,et al.  Mean cutting force prediction in ball-end milling using force map method , 2004 .

[23]  Andrew Y. C. Nee,et al.  An Advanced Treatise On Fixture Design And Planning , 2004 .

[24]  Shreyes N. Melkote,et al.  Determination of minimum clamping forces for dynamically stable fixturing , 2006 .

[25]  Aun-Neow Poo,et al.  Error compensation in machine tools — a review: Part II: thermal errors , 2000 .

[26]  J. Greenwood,et al.  Surface Roughness and Contact: An Apology , 2001 .

[27]  Alain Riviere,et al.  Cotation tridimensionnelle des systémes mécaniques : théorie & pratique , 1994 .

[28]  Paul Mativenga,et al.  An experimental study of cutting forces in high-speed end milling and implications for dynamic force modeling , 2005 .

[29]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[30]  Olivier Legoff,et al.  Manufacturing errors modelling: Two three-dimensional approaches , 2004 .

[31]  Utpal Roy,et al.  Fixturing Analysis For Stability Consideration in an Automated Fixture Design System , 2002 .

[32]  Jean-Yves Dantan,et al.  Virtual manufacturing: prediction of work piece geometric quality by considering machine and set-up accuracy , 2011, Int. J. Comput. Integr. Manuf..

[33]  Somashekar Subrahmanyam Fixturing features selection in feature-based systems , 2002, Comput. Ind..

[34]  Shreyes N. Melkote,et al.  Prediction of workpiece deformation in a fixture system using the finite element method , 2006 .

[35]  Jung-Hua Yeh,et al.  Contact condition modelling for machining fixture setup processes , 1999 .

[36]  Yihao Zheng,et al.  The study of fixture stiffness part I: a finite element analysis for stiffness of fixture units , 2008 .

[37]  B. J. Hamrock,et al.  Simplified solution for stresses and deformations , 1983 .

[38]  A. Ber,et al.  A Method for Cutting Force Evaluation of End Mills , 1988 .

[39]  Shreyes N. Melkote,et al.  Analysis of the effects of fixture clamping sequence on part location errors , 2004 .

[40]  Chana Raksiri,et al.  Geometric and force errors compensation in a 3-axis CNC milling machine , 2004 .

[41]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[42]  James N. Asante,et al.  Effect of fixture compliance and cutting conditions on workpiece stability , 2010 .

[43]  Warren R. DeVries,et al.  Optimization Methods Applied to Selecting Support Positions in Fixture Design , 1991 .

[44]  M. Lalanne,et al.  Mécanique des vibrations linéaires : avec exercices corrigés et méthodes de calcul , 1986 .

[45]  J. A. Greenwood,et al.  Formulas for Moderately Elliptical Hertzian Contacts , 1985 .

[46]  Svetan Ratchev,et al.  Towards an intelligent fixturing system with rapid reconfiguration and part positioning , 2008 .

[47]  J. A. Greenwood,et al.  Analysis of elliptical Hertzian contacts , 1997 .

[48]  W. W. Seto Schaum's outline of theory and problems of mechanical vibrations , 1964 .

[49]  David E. Brewe,et al.  Simplified Solution for Elliptical-Contact Deformation Between Two Elastic Solids , 1977 .

[50]  Dong-Woo Cho,et al.  An analysis of the volumetric error uncertainty of a three-axis machine tool by beta distribution , 2000 .

[51]  J. A. Greenwood,et al.  A surface roughness parameter in Hertz contact , 1984 .

[52]  G. Nemes,et al.  New asymptotic expansion for the Gamma function , 2010 .

[53]  S. J. Hu,et al.  An Integrated Model of a Fixture-Workpiece System for Surface Quality Prediction , 2001 .

[54]  Placid Mathew Ferreira,et al.  Analysis of the Influence of Fixture Locator Errors on the Compliance of Work Part Features to Geometric Tolerance Specifications , 2003 .

[55]  Bashar El-Khasawneh,et al.  A Fast Analytical Method to Compute Optimum Stiffness of Fixturing Locators , 2000 .

[56]  Qingjin Peng,et al.  Computer-Aided Fixture Planning: A Review , 2008 .

[57]  Rodrigo A. Marin,et al.  Kinematic Analysis and Synthesis of Deterministic 3-2-1 Locator Schemes for Machining Fixtures , 2001 .

[58]  Y. Y. Hsu,et al.  A new compensation method for geometry errors of five-axis machine tools , 2007 .

[59]  Steven Y. Liang,et al.  Analysis of Reactions and Minimum Clamping Force for Machining Fixtures with Large Contact Areas , 2000 .

[60]  Byung-Kwon Min,et al.  Reduction of machining errors of a three-axis machine tool by on-machine measurement and error compensation system , 2004 .

[61]  O. Rosenberg,et al.  Trends and developments in the manufacturing of hip joints: an overview , 2006 .

[62]  Can Zhao,et al.  A unified framework of error evaluation and adjustment in machining , 2008 .

[63]  B. B. Mikic,et al.  A Solution to the Contact of Two Rough Spherical Surfaces , 1974 .

[64]  Z. M. Bi,et al.  Flexible fixture design and automation: Review, issues and future directions , 2001 .

[65]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[66]  Iain M. Boyle,et al.  Review: A review and analysis of current computer-aided fixture design approaches , 2011 .

[67]  J N Asante,et al.  A small displacement torsor model for tolerance analysis in a workpiece-fixture assembly , 2009 .

[68]  J. Greenwood,et al.  The Elastic Contact of Rough Spheres , 1967 .

[69]  Said Zirmi,et al.  Conception de montage d’usinage : placement des éléments technologiques en contact avec la pièce , 2009 .

[70]  T. Tsukada,et al.  On the Approach between a Sphere and a Rough Surface (1st Report) , 1981 .

[71]  Yiming Rong,et al.  Geometric and Kinetic Model Based Computer-Aided Fixture Design Verification , 2003, Journal of Computing and Information Science in Engineering.

[72]  Shreyes N. Melkote,et al.  Fixture Clamping Force Optimisation and its Impact on Workpiece Location Accuracy , 2001 .

[73]  Majid Bahrami,et al.  A Compact Model for Spherical Rough Contacts , 2005 .