An ALE ESFEM for Solving PDEs on Evolving Surfaces

[1]  C. M. Elliott,et al.  Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .

[2]  C. M. Elliott,et al.  Modelling cell motility and chemotaxis with evolving surface finite elements , 2012, Journal of The Royal Society Interface.

[3]  C. M. Elliott,et al.  A Fully Discrete Evolving Surface Finite Element Method , 2012, SIAM J. Numer. Anal..

[4]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[5]  Gerhard Dziuk,et al.  Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .

[6]  Andreas Dedner,et al.  Analysis of the discontinuous Galerkin method for elliptic problems on surfaces , 2012, IMA Journal of Numerical Analysis.

[7]  C. M. Elliott,et al.  Numerical computation of advection and diffusion on evolving diffuse interfaces , 2011 .

[8]  Steven D. Webb,et al.  Modeling Cell Movement and Chemotaxis Using Pseudopod-Based Feedback , 2011, SIAM J. Sci. Comput..

[9]  C. M. Elliott,et al.  The surface finite element method for pattern formation on evolving biological surfaces , 2011, Journal of mathematical biology.

[10]  Charles M. Elliott,et al.  Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..

[11]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[12]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[13]  Randall J. LeVeque,et al.  LeVeque adaptive refinement on the sphere Logically rectangular finite volume methods with , 2009 .

[14]  Charles M. Elliott,et al.  An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..

[15]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[16]  Donna A. Calhoun,et al.  A Finite Volume Method for Solving Parabolic Equations on Logically Cartesian Curved Surface Meshes , 2009, SIAM J. Sci. Comput..

[17]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[18]  Charles M. Elliott,et al.  ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE , 2009 .

[19]  Qiang Du,et al.  A finite volume method on general surfaces and its error estimates , 2009 .

[20]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[21]  Lili Ju,et al.  A posteriori error estimates for finite volume approximations of elliptic equations on general surfaces , 2009 .

[22]  Charles M. Elliott,et al.  Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method , 2008, J. Comput. Phys..

[23]  Gerhard Dziuk,et al.  Computational parametric Willmore flow , 2008, Numerische Mathematik.

[24]  Colin B. Macdonald,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008, J. Sci. Comput..

[25]  Harald Garcke,et al.  On the parametric finite element approximation of evolving hypersurfaces in R3 , 2008, J. Comput. Phys..

[26]  Charles M. Elliott,et al.  Eulerian finite element method for parabolic PDEs on implicit surfaces , 2008 .

[27]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[28]  Harald Garcke,et al.  Numerical approximation of anisotropic geometric evolution equations in the plane , 2007 .

[29]  HARALD GARCKE,et al.  On the Variational Approximation of Combined Second and Fourth Order Geometric Evolution Equations , 2007, SIAM J. Sci. Comput..

[30]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[31]  Harald Garcke,et al.  A parametric finite element method for fourth order geometric evolution equations , 2007, J. Comput. Phys..

[32]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[33]  A. Voigt,et al.  PDE's on surfaces---a diffuse interface approach , 2006 .

[34]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[35]  C. M. Elliott,et al.  Computation of geometric partial differential equations and mean curvature flow , 2005, Acta Numerica.

[36]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[37]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[38]  Harald Garcke,et al.  Bi-directional diffusion induced grain boundary motion with triple junctions , 2004 .

[39]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[40]  Charles M. Elliott,et al.  Error Analysis of a Semidiscrete Numerical Scheme for Diffusion in Axially Symmetric Surfaces , 2003, SIAM J. Numer. Anal..

[41]  Charles M. Elliott,et al.  Computations of bidirectional grain boundary dynamics in thin metallic films , 2003 .

[42]  J. Sethian,et al.  Transport and diffusion of material quantities on propagating interfaces via level set methods , 2003 .

[43]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[44]  C. M. Elliott,et al.  Analysis and computations for a model of quasi-static deformation of a thinning sheet arising in superplastic forming , 2002, European Journal of Applied Mathematics.

[45]  P. Fife,et al.  Chemically induced grain boundary dynamics, forced motion by curvature, and the appearance of double seams , 2002, European Journal of Applied Mathematics.

[46]  Charles M. Elliott,et al.  Numerical diffusion-induced grain boundary motion , 2001 .

[47]  C. M. Elliott,et al.  An existence and uniqueness result for a phase-field model of diffusion-induced grain-boundary motion , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[48]  Charles M. Elliott,et al.  A free-boundary model for diffusion-induced grain boundary motion , 2001 .

[49]  I. Graham,et al.  Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth , 2001, Journal of mathematical biology.

[50]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[51]  P. Maini,et al.  Reaction and diffusion on growing domains: Scenarios for robust pattern formation , 1999, Bulletin of mathematical biology.

[52]  Uwe F. Mayer,et al.  Classical Solutions for Diffusion-Induced Grain-Boundary Motion , 1999 .

[53]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[54]  K. Deckelnick,et al.  Finite element error bounds for a curve shrinking with prescribed normal contact to a fixed boundary , 1998 .

[55]  Paul C. Fife,et al.  A phase-field model for diffusion-induced grain-boundary motion , 1997 .

[56]  Charles M. Elliott,et al.  The global dynamics of discrete semilinear parabolic equations , 1993 .

[57]  C. M. Elliott,et al.  A one-dimensional quasi-static contact problem in linear thermoelasticity , 1993, European Journal of Applied Mathematics.

[58]  Charles M. Elliott,et al.  Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .

[59]  Charles M. Elliott,et al.  `A generalised diffusion equation for phase separation of a multi-component mixture with interfacial free energy' , 1991 .

[60]  John W. Barrett,et al.  Finite Element Approximation of a Rigid Punch Indenting a Membrane , 1991 .

[61]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[62]  C. M. Elliott,et al.  Constrained anisotropic elastic materials in unilateral contact with or without friction , 1991 .

[63]  G. Dziuk,et al.  An algorithm for evolutionary surfaces , 1990 .

[64]  C. M. Elliott,et al.  A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation , 1989 .

[65]  S. McKee,et al.  Industrial numerical analysis , 1988 .

[66]  C. M. Elliott,et al.  Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces , 1987 .

[67]  John W. Barrett,et al.  A practical finite element approximation of a semi-definite Neumann problem on a curved domain , 1987 .

[68]  Avner Friedman,et al.  The free boundary of a flow in a porous body heated from its boundary , 1986 .

[69]  John W. Barrett,et al.  Finite element approximation of the Dirichlet problem using the boundary penalty method , 1986 .

[70]  John W. Barrett,et al.  Total Flux Estimates for a Finite-Element Approximation of Elliptic Equations , 1986 .

[71]  C. M. Elliott,et al.  The contact set of rigid body partially supported by a membrane , 1986 .

[72]  C. M. Elliott,et al.  Analysis of a Model of Percolation in a Gently Sloping Sand-Bank , 1985 .

[73]  Charles M. Elliott,et al.  The Stefan Problem with a Non-monotone Constitutive Relation , 1985 .

[74]  C. Grovenor Diffusion induced grain boundary migration in thin gold/copper films , 1985 .

[75]  John W. Barrett,et al.  FIXED MESH FINITE ELEMENT APPROXIMATIONS TO A FREE BOUNDARY PROBLEM FOR AN ELLIPTIC EQUATION WITH AN OBLIQUE DERIVATIVE BOUNDARY CONDITION , 1985 .

[76]  C. M. Elliott,et al.  A Finite-element Method for Solving Elliptic Equations with Neumann Data on a Curved Boundary Using Unfitted Meshes , 1984 .

[77]  C. M. Elliott,et al.  On the numerical solution of an integro-differential equation arising from wave-power hydraulics , 1981 .

[78]  J. Schnakenberg,et al.  Simple chemical reaction systems with limit cycle behaviour. , 1979, Journal of theoretical biology.

[79]  J. Cahn,et al.  Diffusion induced grain boundary migration , 1979 .

[80]  W. Altemeier,et al.  Miscellaneous , 1848, Brain Research.

[81]  Martin Rumpf,et al.  A Convergent Finite Volume Scheme for Diffusion on Evolving Surfaces , 2011, SIAM J. Numer. Anal..

[82]  M. Rumpf Finite Volume Method on Moving Surfaces , 2008 .

[83]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[84]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[85]  Dziuk,et al.  SURFACE FINITE ELEMENTS FOR , 2007 .

[86]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[87]  C. M. Elliott,et al.  Finite-difference approximation of a one-dimensional Hamilton-Jacobi/elliptic system arising in superconductivity , 2002 .

[88]  C. M. Elliott,et al.  Numerical analysis of a mean field model of superconducting vortices , 2001 .

[89]  James F. Blowey,et al.  Curvature Dependent Phase Boundary Motion and Parabolic Double Obstacle Problems , 1993 .

[90]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[91]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[92]  Charles M. Elliott,et al.  Error Analysis of the Enthalpy Method for the Stefan Problem , 1987 .

[93]  C. M. Elliott,et al.  Numerical Studies of the Cahn-Hilliard Equation for Phase Separation , 1987 .

[94]  C. M. Elliott,et al.  Existence for a problem in ground freezing , 1985 .

[95]  C. M. Elliott,et al.  An Error Estimate for a Finite-element Approximation of an Elliptic Variational Inequality Formulation of a Hele—Shaw Moving-boundary Problem , 1983 .

[96]  C. M. Elliott,et al.  A variational inequality approach to Hele-Shaw flow with a moving boundary , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.