Rare event probability estimation for connectivity of large random graphs

Spatial statistical models are of considerable practical and theoretical interest. However, there has been little work on rare-event probability estimation for such models. In this paper we present a conditional Monte Carlo algorithm for the estimation of the probability that random graphs related to Bernoulli and continuum percolation are connected. Numerical results are presented showing that the conditional Monte Carlo estimators significantly outperform the crude simulation estimators.

[1]  Mikael Östling,et al.  Percolation thresholds of two-dimensional continuum systems of rectangles. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Donald L. Iglehart,et al.  Importance sampling for stochastic simulations , 1989 .

[3]  Muriel Médard,et al.  High-reliability topological architectures for networks under stress , 2004, IEEE Journal on Selected Areas in Communications.

[4]  Dirk P. Kroese,et al.  Efficient Monte Carlo simulation via the generalized splitting method , 2012, Stat. Comput..

[5]  Jan-Kees C. W. van Ommeren,et al.  On the importance function in splitting simulation , 2002, Eur. Trans. Telecommun..

[6]  Charles J. Colbourn,et al.  The Combinatorics of Network Reliability , 1987 .

[7]  J. Quintanilla,et al.  Asymmetry in the percolation thresholds of fully penetrable disks with two different radii. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Miro Kraetzl,et al.  The Cross-Entropy Method for Network Reliability Estimation , 2005, Ann. Oper. Res..

[9]  Reuven Y. Rubinstein,et al.  Steady State Rare Events Simulation in Queueing Models and its Complexity Properties , 1994 .

[10]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[11]  F. Al-Shamali,et al.  Author Biographies. , 2015, Journal of social work in disability & rehabilitation.

[12]  Klaus Sutner,et al.  The Complexity of the Residual Node Connectedness Reliability Problem , 1991, SIAM J. Comput..

[13]  J. M. Groocock,et al.  The reliability problem , 1969 .

[14]  P. Grassberger Pair Connectedness and Shortest Path Scaling in Critical Percolation , 1999 .

[15]  Gary A. Talbot Applications of Percolation Theory , 1995 .

[16]  Arkady A. Chernyak,et al.  Residual reliability of P-threshold graphs , 2004, Discret. Appl. Math..

[17]  Peter W. Glynn,et al.  Stochastic Simulation: Algorithms and Analysis , 2007 .

[18]  Volker Schmidt,et al.  A New Approach to Model‐Based Simulation of Disordered Polymer Blend Solar Cells , 2012 .

[19]  Dirk P. Kroese,et al.  Handbook of Monte Carlo Methods , 2011 .

[20]  Klaus Sutner,et al.  Computing Optimal Assignments for Residual Network Reliability , 1997, Discret. Appl. Math..

[21]  Dirk P. Kroese,et al.  A critical exponent for shortest-path scaling in continuum percolation , 2014 .

[22]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo Method (Wiley Series in Probability and Statistics) , 1981 .

[23]  Herbert Edelsbrunner,et al.  The union of balls and its dual shape , 1993, SCG '93.

[24]  Charles J. Colbourn,et al.  Computing Residual Connectedness Reliability for Restricted Networks , 1993, Discret. Appl. Math..

[25]  Tov Elperin,et al.  Estimation of network reliability using graph evolution models , 1991 .

[26]  M. Lomonosov On Monte Carlo Estimates in Network Reliability , 1994, Probability in the Engineering and Informational Sciences.

[27]  Bruno Tuffin,et al.  Splitting for rare-event simulation , 2006, WSC.

[28]  Hiroshi Imai,et al.  Computing the volume of the union of spheres , 1988, The Visual Computer.

[29]  S Torquato,et al.  Effect of dimensionality on the continuum percolation of overlapping hyperspheres and hypercubes. II. Simulation results and analyses. , 2012, The Journal of chemical physics.

[30]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[31]  Paul Glasserman,et al.  Multilevel Splitting for Estimating Rare Event Probabilities , 1999, Oper. Res..

[32]  Ehab S. Elmallah Algorithms for K-terminal reliability problems with node failures , 1992, Networks.

[33]  Hiroshi Imai,et al.  Voronoi Diagram in the Laguerre Geometry and its Applications , 1985, SIAM J. Comput..

[34]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[35]  J. Norris Appendix: probability and measure , 1997 .