Electrothermal analysis and optimization techniques for nanoscale integrated circuits

With technology scaling, on-chip power densities are growing steadily, leading to the point where temperature has become an important consideration in the design of electrical circuits. This paper overviews several methods for the analysis and optimization of thermal effects in integrated circuits. Thermal analysis may be carried out efficiently through the use of finite difference methods, finite element methods, or Green function based methods, each of which provides different accuracy-computation tradeoffs, and the paper begins by surveying these. Next, we overview a restricted set of thermal optimization methods, specifically, placement techniques for thermal heat-spreading, and then we conclude by summarizing a set of future directions in electrothermal design

[1]  Sani R. Nassif,et al.  Power grid analysis using random walks , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[2]  Sung-Mo Kang,et al.  Cell-level placement for improving substrate thermal distribution , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[3]  Yong Zhan,et al.  Fast computation of the temperature distribution in VLSI chips using the discrete cosine transform and table look-up , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..

[4]  A. G. Kokkas Thermal analysis of multiple-layer structures , 1974 .

[5]  Vivek De,et al.  Adaptive body bias for reducing impacts of die-to-die and within-die parameter variations on microprocessor frequency and leakage , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[6]  Haifeng Qian,et al.  Random walks in a supply network , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).

[7]  Sachin S. Sapatnekar,et al.  Mathematically assisted adaptive body bias (ABB) for temperature compensation in gigascale LSI systems , 2006, Asia and South Pacific Conference on Design Automation, 2006..

[8]  Sung-Mo Kang,et al.  ILLIADS-T: an electrothermal timing simulator for temperature-sensitive reliability diagnosis of CMOS VLSI chips , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[9]  Albert E. Ruehli,et al.  The modified nodal approach to network analysis , 1975 .

[10]  Charles M. Fiduccia,et al.  A linear-time heuristic for improving network partitions , 1988, 25 years of DAC.

[11]  Sachin S. Sapatnekar,et al.  Efficient Thermal Placement of Standard Cells in 3D ICs using a Force Directed Approach , 2003, ICCAD.

[12]  D. Schroder,et al.  Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing , 2003 .

[13]  J. Black Mass Transport of Aluminum by Momentum Exchange with Conducting Electrons , 1967 .

[14]  Sachin S. Sapatnekar,et al.  Hierarchical random-walk algorithms for power grid analysis , 2004 .

[15]  Kevin Skadron,et al.  Interconnect lifetime prediction under dynamic stress for reliability-aware design , 2004, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004..

[16]  Sachin S. Sapatnekar,et al.  A hybrid linear equation solver and its application in quadratic placement , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[17]  Charlie Chung-Ping Chen,et al.  3-D Thermal-ADI: a linear-time chip level transient thermal simulator , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  Sachin S. Sapatnekar,et al.  Thermal via placement in 3D ICs , 2005, ISPD '05.

[19]  Sachin S. Sapatnekar,et al.  Partition-driven standard cell thermal placement , 2003, ISPD '03.

[20]  Robert G. Meyer,et al.  Modeling and analysis of substrate coupling in integrated circuits , 1996 .

[21]  D. Logan A First Course in the Finite Element Method , 2001 .

[22]  Sachin S. Sapatnekar,et al.  A high efficiency full-chip thermal simulation algorithm , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[23]  M. N. Özişik Boundary value problems of heat conduction , 1989 .

[24]  Lawrence T. Pileggi,et al.  Efficient full-chip thermal modeling and analysis , 2004, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004..