A Tutorial on Reversible Jump MCMC with a View toward Applications in QTL‐mapping
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[3] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[4] G. Casella,et al. Explaining the Gibbs Sampler , 1992 .
[5] C. Geyer,et al. Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .
[6] C. Geyer,et al. Simulation Procedures and Likelihood Inference for Spatial Point Processes , 1994 .
[7] J. Besag,et al. Bayesian Computation and Stochastic Systems , 1995 .
[8] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[9] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[10] J. Satagopan. Estimating the number of quantitative trait loci via Bayesian model determination , 1996 .
[11] M A Newton,et al. A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. , 1996, Genetics.
[12] P. Green,et al. On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .
[13] I. Hoeschele,et al. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. , 1997, Genetics.
[14] S. Heath. Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. , 1997, American journal of human genetics.
[15] Adrian F. M. Smith,et al. Automatic Bayesian curve fitting , 1998 .
[16] M. Sillanpää,et al. Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. , 1998, Genetics.
[17] David A. Stephens,et al. BAYESIAN ANALYSIS OF QUANTITATIVE TRAIT LOCUS DATA USING REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO , 1998 .