Comparison of 2D Similarity and 3D Superposition. Application to Searching a Conformational Drug Database

In a database of about 2000 approved drugs, represented by 10(5) structural conformers, we have performed 2D comparisons (Tanimoto coefficients) and 3D superpositions. For one class of drugs the correlation between structural resemblance and similar action was analyzed in detail. In general Tanimoto coefficients and 3D scores give similar results, but we find that 2D similarity measures neglect important structural/funtional features. Examples for both over- and underestimation of similarity by 2D metrics are discussed. The required additional effort for 3D superpositions is assessed by implementation of a fast algorithm with a processing time below 0.01 s and a more sophisticated approach (0.5 s per superposition). According to the improvement of similarity detection compared to 2D screening and the pleasant rapidity on a desktop PC, full-atom 3D superposition will be an upcoming method of choice for library prioritization or similarity screening approaches.

[1]  H. Volz,et al.  Cell-mediated Side Effects of Psychopharmacological Treatment , 2001, Arzneimittelforschung.

[2]  Peter Gedeck,et al.  Calculation of Intersubstituent Similarity Using R-Group Descriptors , 2003, J. Chem. Inf. Comput. Sci..

[3]  Y. Martin,et al.  Do structurally similar molecules have similar biological activity? , 2002, Journal of medicinal chemistry.

[4]  Jonas Boström,et al.  A pharmacophore model for dopamine D4 receptor antagonists , 2000, J. Comput. Aided Mol. Des..

[5]  Schmid,et al.  "Scaffold-Hopping" by Topological Pharmacophore Search: A Contribution to Virtual Screening. , 1999, Angewandte Chemie.

[6]  Peter Willett,et al.  Similarity Searching in Files of Three-Dimensional Chemical Structures: Analysis of the BIOSTER Database Using Two-Dimensional Fingerprints and Molecular Field Descriptors , 2000, J. Chem. Inf. Comput. Sci..

[7]  Andrew R. Leach,et al.  A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP , 2002, J. Comput. Aided Mol. Des..

[8]  George R. Uhl,et al.  Drug addiction: Knockout mice and dirty drugs , 1996, Current Biology.

[9]  Hugo Kubinyi,et al.  MOLEKULARE AHNLICHKEIT. 2. STRUKTURBASIERTER ENTWURF VON WIRKSTOFFEN , 1998 .

[10]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Peter Willett,et al.  Similarity Searching in Files of Three‐Dimensional Chemical Structures: Analysis of the BIOSTER Database Using Two‐Dimensional Fingerprints and Molecular Field Descriptors. , 2000 .

[12]  Bernhard Schölkopf,et al.  Feature selection and transduction for prediction of molecular bioactivity for drug design , 2003, Bioinform..

[13]  Mathew Hahn,et al.  Three-Dimensional Shape-Based Searching of Conformationally Flexible Compounds , 1997, J. Chem. Inf. Comput. Sci..

[14]  Peter Willett,et al.  Similarity Searching in Databases of Flexible 3D Structures Using Smoothed Bounded Distance Matrices , 2003, J. Chem. Inf. Comput. Sci..

[15]  David J. Diller,et al.  Use of Catalyst Pharmacophore Models for Screening of Large Combinatorial Libraries , 2002, J. Chem. Inf. Comput. Sci..

[16]  H Kubinyi [Molecular similarity. 2. The structural basis of drug design]. , 1998, Pharmazie in unserer Zeit.

[17]  Gerhard Klebe,et al.  A 3D QSAR Study on a Set of Dopamine D4 Receptor Antagonists , 2003, J. Chem. Inf. Comput. Sci..

[18]  C. Lemmen,et al.  FLEXS: a method for fast flexible ligand superposition. , 1998, Journal of medicinal chemistry.

[19]  Y. Martin,et al.  An evaluation of structural descriptors and clustering methods for use in diversity selection. , 1998, SAR and QSAR in environmental research.

[20]  Mary P. Bradley An overview of the diversity represented in commercially-available databases , 2002, J. Comput. Aided Mol. Des..

[21]  Gordon M Crippen,et al.  Three-dimensional molecular descriptors and a novel QSAR method. , 2002, Journal of molecular graphics & modelling.

[22]  Brown Rd,et al.  An Evaluation of Structural Descriptors and Clustering Methods for Use in Diversity Selection , 1998 .

[23]  H. Matter,et al.  Selecting optimally diverse compounds from structure databases: a validation study of two-dimensional and three-dimensional molecular descriptors. , 1997, Journal of medicinal chemistry.

[24]  Xin Chen,et al.  Performance of Similarity Measures in 2D Fragment-Based Similarity Searching: Comparison of Structural Descriptors and Similarity Coefficients , 2002, J. Chem. Inf. Comput. Sci..

[25]  G. Uhl,et al.  Knockout mice and dirty drugs. Drug addiction. , 1996, Current biology : CB.

[26]  Jeremy L Jenkins,et al.  Virtual screening to enrich hit lists from high‐throughput screening: A case study on small‐molecule inhibitors of angiogenin , 2002, Proteins.

[27]  Shuichi Hirono,et al.  Estimation of active conformations of drugs by a new molecular superposing procedure , 1999, J. Comput. Aided Mol. Des..

[28]  Hugo Kubinyi,et al.  Molekulare Ähnlichkeit. 1. Chemische Struktur und biologische Wirkung , 1998 .

[29]  Andreas Krämer,et al.  Fast 3D molecular superposition and similarity search in databases of flexible molecules , 2003, J. Comput. Aided Mol. Des..

[30]  H Kubinyi [Molecular similarity. 1. Chemical structure and biological action]. , 1998, Pharmazie in unserer Zeit.

[31]  Johannes H. Voigt,et al.  Comparison of the NCI Open Database with Seven Large Chemical Structural Databases , 2001, J. Chem. Inf. Comput. Sci..

[32]  The selection and use of essential medicines. Report of the WHO Expert Committee, 2002 (including the 12th Model list of essential medicines). , 2003, World Health Organization technical report series.

[33]  John S. Delaney,et al.  Assessing the ability of chemical similarity measures to discriminate between active and inactive compounds , 1996, Molecular Diversity.

[34]  Andrew Smellie,et al.  Identification of Common Functional Configurations Among Molecules , 1996, J. Chem. Inf. Comput. Sci..

[35]  R. Cramer,et al.  Dbtop: topomer similarity searching of conventional structure databases. , 2002, Journal of molecular graphics & modelling.

[36]  S. L. Dixon,et al.  One-dimensional molecular representations and similarity calculations: methodology and validation. , 2001, Journal of medicinal chemistry.

[37]  Peter Willett,et al.  Comparison of chemical clustering methods using graph- and fingerprint-based similarity measures. , 2003, Journal of molecular graphics & modelling.

[38]  Philip M. Dean,et al.  slate: A method for the superposition of flexible ligands , 2001, J. Comput. Aided Mol. Des..

[39]  Robert Stanton,et al.  Conformational analysis by intersection: CONAN , 2003, J. Comput. Chem..

[40]  Christian Lemmen,et al.  Computational methods for the structural alignment of molecules , 2000, J. Comput. Aided Mol. Des..

[41]  Peter Willett,et al.  Evaluation of Similarity Measures for Searching the Dictionary of Natural Products Database , 2003, J. Chem. Inf. Comput. Sci..

[42]  Naomie Salim,et al.  Analysis and Display of the Size Dependence of Chemical Similarity Coefficients , 2003, J. Chem. Inf. Comput. Sci..

[43]  Shigeyuki Yokoyama,et al.  Conformation of ligands bound to the muscarinic acetylcholine receptor. , 2002, Molecular pharmacology.

[44]  Stephan Kopp,et al.  Similarity based SAR (SIBAR) as tool for early ADME profiling , 2002, J. Comput. Aided Mol. Des..

[45]  Gerhard Klebe,et al.  Methodological developments and strategies for a fast flexible superposition of drug-size molecules , 1999, J. Comput. Aided Mol. Des..

[46]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[47]  D B Turner,et al.  The EVA spectral descriptor. , 2000, European journal of medicinal chemistry.