Using life history trade‐offs to understand core‐transient structuring of a small mammal community

An emerging conceptual framework suggests that communities are composed of two main groups of species through time: core species that are temporally persistent, and transient species that are temporally intermittent. Core and transient species have been shown to differ in spatiotemporal turnover, diversity patterns, and importantly, survival strategies targeted at local versus regional habitat use. While the core-transient framework has typically been a site-specific designation for species, we suggest that if core and transient species have local versus regional survival strategies across sites, and consistently differ in population-level spatial structure and gene flow, they may also typically exhibit different life-history strategies. Specifically, core species should display relatively low movement rates, low reproductive effort, high ecological specialization and high survival rates compared to transient species, which may display a wider range of traits given that transience may result from source-s...

[1]  J. Diamond Colonization of Exploded Volcanic Islands by Birds: The Supertramp Strategy , 1974, Science.

[2]  Thomas J. Valone,et al.  Timescale of Perennial Grass Recovery in Desertified Arid Grasslands Following Livestock Removal , 2002 .

[3]  S. K. Morgan Ernest,et al.  Regulation of diversity: maintenance of species richness in changing environments , 2001, Oecologia.

[4]  Don E. Wilson,et al.  The Smithsonian Book of North American Mammals , 2004, Biodiversity & Conservation.

[5]  W. Ulrich,et al.  Frequent and occasional species and the shape of relative‐abundance distributions , 2004 .

[6]  Nicholas J. Gotelli,et al.  Metapopulation Models: The Rescue Effect, the Propagule Rain, and the Core-Satellite Hypothesis , 1991, The American Naturalist.

[7]  A. Magurran,et al.  Temporal turnover and the maintenance of diversity in ecological assemblages , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  A. Magurran,et al.  Direct evidence that density-dependent regulation underpins the temporal stability of abundant species in a diverse animal community , 2014, Proceedings of the Royal Society B: Biological Sciences.

[9]  James H. Brown,et al.  Long‐Term Experimental Study of a Chihuahuan Desert Rodent Community: 13 Years of Competition , 1994 .

[10]  Kate E. Jones,et al.  The delayed rise of present-day mammals , 1990, Nature.

[11]  D. Loye,et al.  An Experimental Field Study , 1977 .

[12]  Gaggiotti Population Genetic Models of Source-Sink Metapopulations , 1996, Theoretical population biology.

[13]  S. McCauley The Role of Local and Regional Processes in Structuring Larval Dragonfly Distributions Across Habitat Gradients , 2007 .

[14]  B. G. Murray,et al.  Dispersal in Vertebrates , 1967 .

[15]  James H. Brown,et al.  Effects of body size and lifestyle on evolution of mammal life histories , 2007, Proceedings of the National Academy of Sciences.

[16]  James H. Brown,et al.  Experimental Manipulation of a Desert Rodent Community: Food Addition and Species Removal , 1985 .

[17]  E. Stackebrandt,et al.  Taxonomy and systematics. , 2005 .

[18]  T. J. Walker,et al.  The Evolutionary Ecology of Animal Migration , 1978 .

[19]  J. Belmaker Species richness of resident and transient coral‐dwelling fish responds differentially to regional diversity , 2009 .

[20]  J. Reid,et al.  On animal distributions in dynamic landscapes , 2003 .

[21]  J. P. Grime,et al.  Benefits of plant diversity to ecosystems: immediate, filter and founder effects , 1998 .

[22]  James H. Brown,et al.  Intra-guild compensation regulatesspecies richness in desert rodents , 2005 .

[23]  Mark John Costello,et al.  Turnover of transient species as a contributor to the richness of a stable amphipod (Crustacea) fauna in a sea inlet , 1996 .

[24]  T. Kawecki Adaptation to Marginal Habitats , 2008 .

[25]  James H. Brown,et al.  Intra-guild compensation regulates species richness in desert rodents: reply , 2006 .

[26]  R. Holt,et al.  Evolutionary Consequences of Asymmetric Dispersal Rates , 2002, The American Naturalist.

[27]  B. Charlesworth,et al.  Evolution in Age-Structured Populations , 1984 .

[28]  Martin Wikelski,et al.  The physiology/life-history nexus , 2002 .

[29]  James H. Brown,et al.  Control of a Desert-Grassland Transition by a Keystone Rodent Guild , 1990, Science.

[30]  K. Burnham,et al.  Program MARK: survival estimation from populations of marked animals , 1999 .

[31]  S. Stearns,et al.  The Evolution of Life Histories , 1992 .

[32]  P. Waser,et al.  Does Competition Drive Dispersal , 1985 .

[33]  Ilkka Hanski,et al.  Dynamics of regional distribution: the core and satellite species hypothesis , 1982 .

[34]  M. Ritchie,et al.  Dynamics of core and occasional species in the marine plankton: tintinnid ciliates in the north‐west Mediterranean Sea , 2009 .

[35]  J. Choate,et al.  Mammals of Arizona , 1989 .

[36]  Jon Norberg,et al.  The evolutionary ecology of metacommunities. , 2008, Trends in ecology & evolution.

[37]  Thomas Lenormand,et al.  Gene flow and the limits to natural selection , 2002 .

[38]  G. Mace,et al.  Energetic Constraints on Home-Range Size , 1983, The American Naturalist.

[39]  T. Valone,et al.  Reduced rodent biodiversity destabilizes plant populations. , 2007, Ecology.

[40]  R. Gaugler,et al.  Taxonomy and systematics. , 2002 .

[41]  François Rousset,et al.  Evolution of the distribution of dispersal distance under distance‐dependent cost of dispersal , 2002 .

[42]  J. Gutiérrez,et al.  Spatial Ecology of Small Mammals in North-central Chile: Role of Precipitation and Refuges , 2007 .

[43]  R. Freckleton,et al.  Niches versus neutrality: uncovering the drivers of diversity in a species-rich community. , 2009, Ecology letters.

[44]  Sudarmaji,et al.  An experimental field study to evaluate a trap-barrier system and fumigation for controlling the rice field rat, Rattus argentiventer, in rice crops in West Java , 1998 .

[45]  D. Legrand,et al.  Individual dispersal, landscape connectivity and ecological networks , 2013, Biological reviews of the Cambridge Philosophical Society.

[46]  M. C. Urban,et al.  Evolving metacommunities: toward an evolutionary perspective on metacommunities. , 2006, Ecology.

[47]  Jeffrey L. Laake,et al.  RMark : an R Interface for analysis of capture-recapture data with MARK , 2013 .

[48]  Campbell O. Webb,et al.  Picante: R tools for integrating phylogenies and ecology , 2010, Bioinform..

[49]  E. White,et al.  Opposing Mechanisms Drive Richness Patterns of Core and Transient Bird Species , 2013, The American Naturalist.

[50]  M. MacNeil,et al.  Commonness and rarity in the marine biosphere , 2014, Proceedings of the National Academy of Sciences.

[51]  S. Ernest,et al.  TEMPORAL DYNAMICS IN THE STRUCTURE AND COMPOSITION OF A DESERT RODENT COMMUNITY , 2004 .

[52]  M. McPeek,et al.  The Evolution of Dispersal in Spatially and Temporally Varying Environments , 1992, The American Naturalist.

[53]  S. Ernest,et al.  Species-level and community-level responses to disturbance: a cross-community analysis. , 2014, Ecology.

[54]  J. Lawton,et al.  Insect Herbivores on Bracken Do Not Support the Core-Satellite Hypothesis , 1989, The American Naturalist.

[55]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[56]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[57]  Jonathan D. G. Jones,et al.  Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss , 2018 .

[58]  S. Ernest,et al.  Delayed compensation for missing keystone species by colonization. , 2001, Science.

[59]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[60]  A. Magurran,et al.  Explaining the excess of rare species in natural species abundance distributions , 2003, Nature.

[61]  Luke J. Harmon,et al.  GEIGER: investigating evolutionary radiations , 2008, Bioinform..

[62]  William F. Fagan,et al.  Search and navigation in dynamic environments – from individual behaviors to population distributions , 2008 .

[63]  S. Collins,et al.  forumThe core–satellite species hypothesis provides a theoretical basis for Grime's classification of dominant, subordinate, and transient species , 1999 .

[64]  N. Loeuille,et al.  Evolution in Metacommunities: On the Relative Importance of Species Sorting and Monopolization in Structuring Communities , 2008, The American Naturalist.

[65]  Colin F. J. O'Donnell,et al.  Home range and use of space by Chalinolobus tuberculatus, a temperate rainforest bat from New Zealand , 2001 .

[66]  Michael S. Gaines,et al.  Analysis of adaptation in heterogeneous landscapes: Implications for the evolution of fundamental niches , 1992, Evolutionary Ecology.

[67]  C. Ghalambor,et al.  Parental investment strategies in two species of nuthatch vary with stage-specific predation risk and reproductive effort , 2000, Animal Behaviour.

[68]  Jonathan M. Chase,et al.  Trade‐offs in community ecology: linking spatial scales and species coexistence , 2004 .

[69]  T. Clutton‐Brock,et al.  The Evolution of Parental Care , 2019 .

[70]  Eva Kisdi,et al.  Dispersal: Risk Spreading versus Local Adaptation , 2002, The American Naturalist.