Globally Optimal Networks for Multipressure Distillation of Homogeneous Azeotropic Mixtures

In this article, a methodology for the globally optimal synthesis of a network of vapor–liquid equilibrium flash separators that can operate at multiple pressures and separate an azeotropic mixture is presented. The objective function minimized is the total flow entering the network flashes. The proposed synthesis methodology employs the infinite-dimensional state-space (IDEAS) conceptual framework, which is shown to be applicable to the problem under consideration. The resulting infinite linear programming (ILP) IDEAS formulation is shown to have several properties that allow its simplification. The approximate solution of this IDEAS ILP is pursued through the solution of a number of finite-dimensional linear programs (FLPs) of ever increasing size, whose optimum values form a sequence that converges to the ILP’s infimum. The proposed optimal design methodology is general in nature and can be used to separate any number of pressure-sensitive azeotropic mixtures, with or without use of an entrainer. The m...

[1]  Peter J. Ryan,et al.  Design/optimization of ternary heterogeneous azeotropic distillation sequences , 1989 .

[2]  K. Kaczmarski,et al.  Fast finite difference method for solving multicomponent adsorption-chromatography models , 1996 .

[3]  Rakesh Agrawal,et al.  Separations Research Needs for the 21st Century , 2005 .

[4]  Hamid Reza Mortaheb,et al.  Simulation and optimization of heterogeneous azeotropic distillation process with a rate-based model , 2004 .

[5]  Th. Frey,et al.  MINLP Optimization of several process structures for the separation of azeotropic ternary mixtures , 2000 .

[6]  When Zhou,et al.  On dimensionality of attainable region construction for isothermal reactor networks , 2008, Comput. Chem. Eng..

[7]  Rafiqul Gani,et al.  Simulation, design, and analysis of azeotropic distillation operations , 1993 .

[8]  Vasilios Manousiouthakis,et al.  Infinite DimEnsionAl State-space approach to reactor network synthesis: application to attainable region construction , 2002 .

[9]  Wen Zhou,et al.  Non-ideal reactor network synthesis through IDEAS: Attainable region construction , 2006 .

[10]  Michael F. Doherty,et al.  Thermal integration of homogeneous azeotropic distillation sequences , 1990 .

[11]  Johann Stichlmair,et al.  Design and economic optimization of azeotropic distillation processes using mixed-integer nonlinear programming , 1998 .

[12]  Vasilios Manousiouthakis,et al.  Globally optimal power cycle synthesis via the Infinite-DimEnsionAl State-space (IDEAS) approach featuring minimum area with fixed utility , 2003 .

[13]  William L. Luyben,et al.  Design and control of a two-column azeotropic distillation system , 1985 .

[14]  Diane Hildebrandt,et al.  Column Profile Maps. 1. Derivation and Interpretation , 2004 .

[15]  Angelo Lucia,et al.  Energy targeting and minimum energy distillation column sequences , 2010, Comput. Chem. Eng..

[16]  Warren D. Seider,et al.  Semicontinuous, pressure-swing distillation , 2000 .

[17]  W. Marquardt,et al.  Efficient Optimization-Based Design of Distillation Columns for Homogenous Azeotropic Mixtures , 2006 .

[18]  Degrees of Freedom in Multicomponent Absorption and Rectification Columns , 1942 .

[19]  Vasilios Manousiouthakis,et al.  IDEAS Approach to Process Network Synthesis: Minimum Plate Area for Complex Distillation Networks with Fixed Utility Cost† , 2002 .

[20]  Vasilios Manousiouthakis,et al.  IDEAS approach to process network synthesis: Application to multicomponent MEN , 2000 .

[21]  Vasilios Manousiouthakis,et al.  Variable density fluid reactor network synthesis—Construction of the attainable region through the IDEAS approach , 2007 .

[22]  Vasilios Manousiouthakis,et al.  IDEAS approach to process network synthesis: minimum utility cost for complex distillation networks , 2002 .

[23]  Michael F. Doherty,et al.  Design and minimum reflux for heterogeneous azeotropic distillation columns , 1989 .

[24]  M. F. Malone,et al.  Computing azeotropes in multicomponent mixtures , 1993 .

[25]  Michael F. Doherty,et al.  Design and synthesis of heterogeneous azeotropic distillations—II. Residue curve maps , 1990 .

[26]  Johann Stichlmair,et al.  MINLP-optimization of complex column configurations for azeotropic mixtures , 1997 .

[27]  Megan Jobson,et al.  Shortcut design method for columns separating azeotropic mixtures , 2004 .

[28]  Vasilios Manousiouthakis,et al.  IDEAS approach to the synthesis of globally optimal separation networks: application to chromium recovery from wastewater , 2003 .

[29]  Xiangping Zhang,et al.  Design of separation process of azeotropic mixtures based on the green chemical principles , 2007 .

[30]  Vasilios I. Manousiouthakis,et al.  Multi-feed attainable region construction using the Shrink–Wrap algorithm , 2008 .

[31]  Andreas A. Linninger,et al.  Industry-wide energy saving by complex separation networks , 2009, Comput. Chem. Eng..

[32]  Ignacio E. Grossmann,et al.  An aggregated MINLP optimization model for synthesizing azeotropic distillation systems , 1999 .

[33]  Michael F. Doherty,et al.  A new pressure-swing-distillation process for separating homogeneous azeotropic mixtures , 1992 .

[34]  Michael F. Doherty,et al.  Optimal design and synthesis of homogeneous azeotropic distillation sequences , 1989 .

[35]  Michael F. Doherty,et al.  Design and synthesis of heterogeneous azeotropic distillations—III. Column sequences , 1990 .

[36]  H. Roscoe XXXVI.—On the composition of the aqueous acids of constant boiling point.—Second communication , 1862 .

[37]  Vasilios Manousiouthakis,et al.  Identification of the Attainable Region for Batch Reactor Networks , 2008 .

[38]  Vasilios I. Manousiouthakis,et al.  Global optimization of reactive distillation networks using IDEAS , 2004, Comput. Chem. Eng..

[39]  Jeffrey J. Siirola,et al.  Process synthesis prospective , 2004, Comput. Chem. Eng..

[40]  Larry A. Taylor,et al.  The Shrink-Wrap algorithm for the construction of the attainable region: an application of the IDEAS framework , 2004, Comput. Chem. Eng..