PANCHROMATIC OBSERVATIONS AND MODELING OF THE HV TAU C EDGE-ON DISK

We present new high spatial resolution (≲0.″1) 1–5 μm adaptive optics images, interferometric 1.3 mm continuum and 12CO 2–1 maps, and 350 μm, 2.8 and 3.3 mm fluxes measurements of the HV Tau system. Our adaptive optics images unambiguously demonstrate that HV Tau AB–C is a common proper motion pair. They further reveal an unusually slow orbital motion within the tight HV Tau AB pair that suggests a highly eccentric orbit and/or a large deprojected physical separation. Scattered light images of the HV Tau C edge-on protoplanetary disk suggest that the anisotropy of the dust scattering phase function is almost independent of wavelength from 0.8 to 5 μm, whereas the dust opacity decreases significantly over the same range. The images further reveal a marked lateral asymmetry in the disk that does not vary over a timescale of two years. We further detect a radial velocity gradient in the disk in our 12CO map that lies along the same position angle as the elongation of the continuum emission, which is consistent with Keplerian rotation around a 0.5–1 M☉ central star, suggesting that it could be the most massive component in the triple system. To obtain a global representation of the HV Tau C disk, we search for a model that self-consistently reproduces observations of the disk from the visible regime up to millimeter wavelengths. We use a powerful radiative transfer model to compute synthetic disk observations and use a Bayesian inference method to extract constraints on the disk properties. Each individual image, as well as the spectral energy distribution, of HV Tau C can be well reproduced by our models with fully mixed dust provided grain growth has already produced larger-than-interstellar dust grains. However, no single model can satisfactorily simultaneously account for all observations. We suggest that future attempts to model this source include more complex dust properties and possibly vertical stratification. While both grain growth and stratification have already been suggested in many disks, only a panchromatic analysis, such as presented here, can provide a complete picture of the structure of a disk, a necessary step toward quantitatively testing the predictions of numerical models of disk evolution.

[1]  D. Wilner,et al.  A break in the gas and dust surface density of the disc around the T Tauri star IM Lupi , 2009, 0904.1127.

[2]  R. Neuhaeuser,et al.  The multiplicity of exoplanet host stars - New low-mass stellar companions of the exoplanet host stars HD 125612 and HD 212301 , 2008, 0812.2561.

[3]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[4]  D. Padgett,et al.  Probing dust grain evolution in IM Lupi's circumstellar disc. Multi-wavelength observations and mo , 2008, 0808.0619.

[5]  C. Dullemond,et al.  A representative particle approach to coagulation and fragmentation of dust aggregates and fluid droplets , 2008, 0807.5052.

[6]  D. Padgett,et al.  Multiwavelength studies of the gas and dust disc of IRAS 04158+2805 , 2008, 0804.3483.

[7]  M. Casali,et al.  Deep near-IR variability survey of pre-main-sequence stars in ρ Ophiuchi , 2008, 0804.1548.

[8]  D. Wilner,et al.  Gas and Dust Emission at the Outer Edge of Protoplanetary Disks , 2008, 0801.4763.

[9]  S. Bontemps,et al.  Multiple protostellar systems II. A high resolution near-infrared imaging survey in nearby star-forming regions ⋆ , 2007, 0710.0827.

[10]  Michel Mayor,et al.  The impact of stellar duplicity on planet occurrence and properties. I. Observational results of a V , 2007 .

[11]  Y. Hayano,et al.  Detection of Water Ice in Edge-on Protoplanetary Disks: HK Tauri B and HV Tauri C , 2007 .

[12]  L. Fouchet,et al.  3D SPH simulations of grain growth in protoplanetary disks , 2007, Proceedings of the International Astronomical Union.

[13]  F. Ménard,et al.  On the stratified dust distribution of the GG Tauri circumbinary ring , 2007, 0704.2747.

[14]  R. Neri,et al.  Millimeter imaging of HD 163296: probing the disk structure and kinematics , 2007, 0704.0616.

[15]  K. Flaherty,et al.  Infrared Extinction toward Nearby Star-forming Regions , 2007, astro-ph/0703777.

[16]  K. Stapelfeldt,et al.  Deep Spitzer Spectroscopy of the “Flying Saucer” Edge-on Disk: Large Grains beyond 50 AU , 2007, astro-ph/0702394.

[17]  K. Stapelfeldt,et al.  Asymmetry and Variability in the HH 30 Circumstellar Disk , 2007 .

[18]  Jonathan P. Williams,et al.  High-Resolution Submillimeter Constraints on Circumstellar Disk Structure , 2006, astro-ph/0610813.

[19]  Claude BertoutFrancoise Genova A kinematic study of the Taurus-Auriga T association , 2006, astro-ph/0610506.

[20]  Ithaca,et al.  A Survey and Analysis of Spitzer Infrared Spectrograph Spectra of T Tauri Stars in Taurus , 2006, astro-ph/0608038.

[21]  F. Ménard,et al.  Monte Carlo radiative transfer in protoplanetary disks , 2006, astro-ph/0606550.

[22]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization , 2006 .

[23]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[24]  L. Mundy,et al.  Large dust particles in disks around T Tauri stars , 2005, astro-ph/0509555.

[25]  Sao,et al.  Effects of Dust Growth and Settling in T Tauri Disks , 2005, astro-ph/0511564.

[26]  J. Augereau,et al.  c2d Spitzer IRS Spectra of Disks around T Tauri Stars. I. Silicate Emission and Grain Growth , 2005, astro-ph/0511092.

[27]  L. Prato,et al.  Investigating Disk Evolution: A High Spatial Resolution Mid-Infrared Survey of T Tauri Stars , 2005, astro-ph/0509728.

[28]  J. Murray,et al.  Dust distribution in protoplanetary disks - Vertical settling and radial migration , 2005, astro-ph/0508452.

[29]  C. Ducourant,et al.  Pre-main sequence star Proper Motion Catalogue , 2005 .

[30]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[31]  G. Fazio,et al.  IRAC Observations of Taurus Pre-Main-Sequence Stars , 2005, astro-ph/0505323.

[32]  A. Dutrey,et al.  Sub-arcsec imaging of the AB Aur molecular disk and envelope at millimeter wavelengths: a non Keplerian disk , 2005, astro-ph/0504023.

[33]  O. Stahl,et al.  Edge-on T Tauri stars , 2005, astro-ph/0501582.

[34]  R. Indebetouw,et al.  The Wavelength Dependence of Interstellar Extinction from 1.25 to 8.0 μm Using GLIMPSE Data , 2004, astro-ph/0406403.

[35]  K. Rice,et al.  Protostars and Planets V , 2005 .

[36]  C. Dominik,et al.  Dust coagulation in protoplanetary disks: A rapid depletion of small grains , 2004, astro-ph/0412117.

[37]  Marc J. Kuchner,et al.  A Minimum-Mass Extrasolar Nebula , 2004, astro-ph/0405536.

[38]  C. Dominik,et al.  The effect of dust settling on the appearance of protoplanetary disks , 2004, astro-ph/0405226.

[39]  K. Stapelfeldt,et al.  The Visible and Near-Infrared Dust Opacity Law in the HH 30 Circumstellar Disk , 2004 .

[40]  B. Macintosh,et al.  A Multiwavelength Scattered Light Analysis of the Dust Grain Population in the GG Tauri Circumbinary Ring , 2004, astro-ph/0401560.

[41]  James Muzerolle,et al.  Unveiling the Inner Disk Structure of T Tauri Stars , 2003, astro-ph/0310067.

[42]  H. Kimura,et al.  Optical properties of cometary dust - Constraints from numerical studies on light scattering by aggregate particles , 2003 .

[43]  D. Padgett,et al.  Hubble Space Telescope WFPC2 Imaging of the Disk and Jet of HV Tauri C , 2003 .

[44]  A. Ghez,et al.  The First Detection of Spatially Resolved Mid-Infrared Scattered Light from a Protoplanetary Disk , 2003, astro-ph/0304083.

[45]  B. Draine Scattering by Interstellar Dust Grains. I. Optical and Ultraviolet , 2003, astro-ph/0304060.

[46]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[47]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[48]  Hiroshige Yoshida,et al.  SHARC II: a Caltech submillimeter observatory facility camera with 384 pixels , 2003, SPIE Astronomical Telescopes + Instrumentation.

[49]  S. Wolf,et al.  The Circumstellar Disk of the Butterfly Star in Taurus , 2003, astro-ph/0301335.

[50]  Jpl,et al.  A layered edge-on circumstellar disk around HK Tau B , 2002, astro-ph/0212512.

[51]  M. Tamura,et al.  Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a 1 Arcsecond Imaging Survey: Evolution and Diversity of the Disks in Their Accretion Stage , 2002 .

[52]  A. Harris,et al.  On the simultaneous optical and near-infrared variability of pre-main sequence stars , 2002 .

[53]  Rachel Lynn Akeson,et al.  Constraints on Circumstellar Disk Parameters from Multiwavelength Observations: T Tauri and SU Aurigae , 2002 .

[54]  M. Wolff,et al.  The Spectral Energy Distribution of HH 30 IRS: Constraining the Circumstellar Dust Size Distribution , 2001 .

[55]  M. Rieke,et al.  High-Resolution Near-Infrared Images and Models of the Circumstellar Disk in HH 30 , 2001, astro-ph/0104066.

[56]  Austin,et al.  Observational Constraints on the Formation and Evolution of Binary Stars , 2001, astro-ph/0103098.

[57]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[58]  L. Hartmann,et al.  Accretion Disks around Young Objects. III. Grain Growth , 2001, astro-ph/0101443.

[59]  G. Blake,et al.  Spectral Energy Distributions of Passive T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with Infrared Space Observatory LWS Observations , 2000, astro-ph/0009428.

[60]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[61]  D. S. Acton,et al.  First Light Adaptive Optics Images from the Keck II Telescope: A New Era of High Angular Resolution Imagery , 2000 .

[62]  C. Surace,et al.  The Universe as Seen by ISO , 1999 .

[63]  John E. Krist,et al.  An Edge-on Circumstellar Disk in the Young Binary System HK Tauri , 1998 .

[64]  John E. Carlstrom,et al.  Constraints on the HL Tauri Protostellar Disk from Millimeter- and Submillimeter-Wave Interferometry , 1997 .

[65]  S. Weidenschilling,et al.  The Origin of Comets in the Solar Nebula: A Unified Model , 1997 .

[66]  J. Holtzman,et al.  Hubble Space Telescope Observations of the Disk and Jet of HH 30 , 1996 .

[67]  S. Holfeltz,et al.  Measurement of T Tauri Binaries Using the Hubble Space Telescope Fine Guidance Sensors , 1996 .

[68]  L. Mundy,et al.  Imaging the HL Tauri Disk at λ = 2.7 Millimeters with the BIMA Array , 1996 .

[69]  Kevin T. C. Jim,et al.  Adaptive Optics Imaging of GG Tauri: Optical Detection of the Circumbinary Ring , 1996 .

[70]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[71]  Alycia J. Weinberger,et al.  Speckle Imaging Measurements of the Relative Tangential Velocities of the Components of T Tauri Binary Stars , 1995 .

[72]  Y. Fukui,et al.  Overall Distribution of Dense Molecular Gas and Star Formation in the Taurus Cloud Complex , 1995 .

[73]  John E. Carlstrom,et al.  PROTOSTELLAR ACCRETION DISKS RESOLVED WITH THE JCMT-CSO INTERFEROMETER , 1994 .

[74]  Vincent Mannings,et al.  Dust in discs around T Tauri stars : grain growth ? , 1994 .

[75]  S. Strom,et al.  A MULTIWAVELENGTH STUDY OF STAR FORMATION IN THE L1495E CLOUD IN TAURUS , 1993, astro-ph/9309037.

[76]  P. Martin,et al.  The Size Distribution of Interstellar Dust Particles as Determined from Extinction , 1993 .

[77]  J. Benson,et al.  Multiplicity among the young stars in Taurus , 1992 .

[78]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[79]  C. Masson,et al.  A 45 AU Radius Source around L1551-IRS 5: A Possible Accretion Disk , 1990 .

[80]  S. Beckwith,et al.  A Survey for Circumstellar Disks around Young Stellar Objects , 1990 .

[81]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[82]  R. Seaman,et al.  A study of the stellar population in the Lynds 1641 dark cloud. I - The IRAS catalog sources , 1989 .

[83]  C. Bertout,et al.  Accretion Disks around T Tauri Stars , 1988 .

[84]  Scott J. Kenyon,et al.  Spectral energy distributions of T Tauri stars - Disk flaring and limits on accretion , 1987 .

[85]  E. Wright Long-Wavelength Absorption by Fractal Dust Grains , 1987 .

[86]  C. Hayashi Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula , 1981 .